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Abstract

Intrinsically disorder regions (IDRs) and abundant in nature, particularly among Eukaryotes.
While they facilitate a wide spectrum of cellular functions including signaling, molecular
assembly and recognition, translation, transcription and regulation, only several hundred IDRs
are annotated functionally. This annotation gap motivates the development of fast and
accurate computational methods that predict IDR functions directly from protein sequences.
We introduce and describe a comprehensive collection of 25 methods that provide accurate
predictions of IDRs that interact with proteins and nucleic acids, that function as flexible linkers
and that moonlight multiple functions. Virtually all of these predictors can be accessed online
and many were developed in the last few years. They utilize a wide range of predictive
architectures and take advantage of modern machine learning algorithms. Our empirical
analysis shows that predictors that are available as webservers enjoy high rates of citations,
attesting to their practical value and popularity. The most cited methods include DISOPRED3,
ANCHOR, alpha-MoRFpred, MoRFpred, fMoRFpred and MoRFCHiBi. We present two case
studies to demonstrate that predictions produced by these computational tools are relatively
easy to interpret and that they deliver valuable functional clues. However, the current
computational tools cover a relatively narrow range of disorder functions. Further development
efforts that would cover a broader range of functions should be pursued. We demonstrate that
a sufficient amount of functionally annotated IDRs that are associated with several other
disorder functions is already available and can be used to design and validate novel predictors.
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1 Introduction

The notion that all proteins have unique and stable 3D structure has been challenged by the
ubiquitous presence of intrinsically disordered regions (IDRs). IDRs lack well-defined 3D
structure under physiological conditions and form dynamic ensembles of conformers without
specific equilibria for their coordinates (1-4). Several large-scale computational studies suggest
that IDRs are highly abundant in nature, particularly among the eukaryotic organisms and viral
proteomes (5-15). The significance of IDRs stems from the diversity of the biological and
molecular functions that they perform. These functions include translation, transcription,
molecular assembly, signaling, regulation, programmed cell death, chromatin remodeling and
compacting, and molecular recognition, to name just a few (16-32). Intrinsic disorder is also
shown to be enriched in the alternative splicing and post-translational modification sites (33-
37). These three phenomena are thought to drive the regulatory complexity that underpins
eukaryotic organisms (34, 37). However, so far only several hundred IDRs were annotated
functionally (38).

Computational prediction can be used to assist with closing the functional annotation gap for
the millions of the unannotated protein sequences (39, 40). The underlying principle is to use
the limited collection of functionally annotated IDRs to design and optimize predictive models
that can be used to make accurate predictions for the currently unannotated protein
sequences. Many computational tools that target prediction of various functional aspects of
IDRs were developed and published during the last decade (41). They perform prediction in a
high-throughput manner, i.e., a single protein sequence can be predicted in few seconds to a
handful of minutes on a single CPU, depending on the method used. These methods were
designed using a variety of machine learning algorithms, biophysical models, and empirically-
derived scoring functions (41). This chapter sheds light on the myriad of these tools. It primarily
focuses on several practical aspects that are commonly encountered by the end users, such as
availability, popularity, methodology, and interpretation of results.

Section 2 introduces a commonly used categorization of the functions of IDRs. It also provides a
detailed accounting of the currently available functional annotations for each of these
categories. Section 3 motivates and explains computational prediction of the functions of IDRs.
It categorizes the existing predictors based on their target functions, comments on their
popularity and availability, and details the underlying predictive architectures. Section 4
demonstrates the working of these methods with two case studies that cover several types of
disorder functions. These case studies also aim to familiarize the reader with the format of
outputs generated by these predictors, and to illustrate their agreement with the native
functional annotations. This chapter concludes by summarizing key observations concerning the
current predictors and suggesting avenues for the future research and development.
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2 Functional Annotations of Intrinsically Disordered Regions

The various functions of IDRs can be broadly categorized by the underlying molecular-level
functions and by the molecular partners (42-45). This convention is implemented in the DisProt
database, which is the global repository of the functionally annotated IDRs (46-48).

The molecular functions of the intrinsic disorder are categorized into six broad classes: entropic
chains, display sites, chaperons, effectors, assemblers and scavengers (42). Entropic chains are
the sequences that remains persistently unstructured to fulfill functions that require substantial
levels of flexibility. A representative example are the IDRs present in the Titin protein (49).
Display sites facilitate post-translational modifications (PTMs). PTMs are often placed inside
IDRs (50, 51), and this placement facilitates interactions with catalytic site modifying enzymes
and access to effector proteins that mediate downstream outcomes upon binding (52). Some
proteins with IDRs act as chaperons to support folding of RNAs and proteins into their
functional conformations (53). As many as half of known RNA chaperons and one third of
protein chaperons are believed to include IDRs (54). The fourth molecular function category are
the effectors which alter functions of other proteins after binding. These IDRs typically
transform from the disordered to structured state upon binding, a process referred to as
coupled folding and binding (55, 56). A couple of examples are the p21 and p27 proteins that
associate with many cyclin dependent kinases for cell cycle regulation (52), and p53 that is
known to interact with dozens of diverse protein partners (57). The next functional category,
assemblers, are proteins that bring several proteins together to make a larger complex. The
assembler IDRs work as either scaffolds or structural mortars that stabilize protein complexes.
An example of the stabilizer function is the ribosomal complex (20, 58). An example for the
scaffold function is Axin which co-localizes B-catenin, casein kinase la, and glycogen synthetase
kinase 3B (59). The sixth and final molecular function category is the scavenger that ingests and
neutralizes small ligands. Chromogranin A is a well-known example of a scavenger that targets
ATP and adrenaline (60).

The other way to categorize functions of IDRs is by the type of their binding partners. There are
seven generic types of partners: proteins, DNAs, RNAs, lipids, metals, inorganic salt and small
molecules. This classification supplements information associated with some of the molecular
functions categories, such as effectors, chaperons, assemblers and scavengers.

The current version 7.05 of the DisProt database provides access of 1996 experimentally
annotated IDRs. This count excludes lower quality annotations that are supported by
ambiguous experimental evidence. Figure 1 breaks down these IDRs into four groups: 1111 IDRs
with no functional annotations, 202 with only the molecular function annotations, 216 with
only the molecular partner annotations, and 467 that have both molecular function and partner
annotations. Some of the IDRs in the latter three sets are associated with multiple functional
annotations. This is concomitant with the observation that IDRs are known to be moonlighting
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(61, 62). We also emphasize the fact that about 56% of IDR in DisProt entirely lack the
functional annotations.

Molecular Function Annotation Only
Molecular Partner Annotations Only

2 No Annotation
Both Annotations Both Annotations

23.4%

Molecular Function Annotation Only
10.1%

Molecular Partner Annotations Only nibied

55.7%
No Annotation

Figure 1. Breakdown of the different types of functional annotations for the IDRs in the DisProt database.

Table 1 provides further details for the molecular functions and their sub-categories that are
annotated in DisProt. It lists all sub-categories together with the number of the corresponding
IDRs and the number of proteins that have these IDRs. The most often annotated molecular
function is the assembler, with 232 annotated IDRs in 146 proteins. The other two functions
that are relatively common in DisProt are entropic chains (186 IDRs with 136 annotated as
disordered linkers) and effectors (181 IDRs). To compare, there are relatively few IDRs
annotated as chaperones (30 IDRs), display sites (23 IDRs) and scavengers (17 IDRs).
Interestingly, some of the sub-categories of molecular functions were not yet annotated. These
include entropic clock, solvate layer, entropy transfer, and methylation site. Table 2 provides
the same analysis for the annotations of molecular partners. The most commonly annotated
binding partners of IDRs are proteins, followed by DNAs, metals, RNAs, small molecules, lipids
and inorganic salts. The latter ligand is associated with only one IDRs. The number of IDRs that
are annotated to interact with proteins (417 IDRs) more than doubles the number of IDRs that
are annotated for all other ligands combined (211 IDRs). Moreover, there are 55 IDRs located in
19 proteins that are annotated with multiple partners.
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Table 1. Number of molecular function annotations for the functionally annotated IDRs in the DisProt database.
Annotations tagged as ambiguous have been excluded. Functions are sorted the number of annotated IDRs.

Functional annotations Number of Number of
Molecular functions Molecular function subcategories annotated IDRs | annotated proteins
Assembler 76 46
Localization (targeting) 20 17
Molec.u!ar Localization (tethering) 13 8
Recognition: - ——
Assernbler .Pr|.0n .(sel.f—assembly, poly.merlzatlc.n?) 10 7
Liquid-liquid phase separation/demixing 3 3
Total 232 146
Flexible linker/spacer 136 95
Entropic bristle 10 5
Entropic spring 2 2
Entropic Chain Self-transport through channel 2 2
Structural mortar 1 1
Entropic clock 0 0
Total 186 109
Inhibitor a4 29
Activator 29 16
cis-regulatory elements 6 5
M'o'lecular DNA bending 4 3
Recognition: Effector -
Disassembler 3 1
DNA unwinding 1 1
Total 181 109
Space filling 3 2
Molecular Entropic exclusion 3 3
Recognition: Protein solvate layer 0 0
Chaperone Entropy transfer 0 0
Total 30 27
Phosphorylation 14 12
Glycosylation 4 4
Fatty acylation 3 3
Molecular -
Recognition: Display Acetylation 2 2
Site Ubiquitination 1 1
Limited proteolysis 1 1
Methylation 0 0
Total 23 21
Metal binding/metal sponge 10 8
Molec.u!ar Neutralization of toxic molecules 3
Recognition: Water storage 1 1
Scavenger
Total 17 14
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Table 2. Number of molecular partner annotations for the functionally annotated IDRs in the DisProt database.
IDRs annotated with multiple partners are counted for each listed partner. Annotations tagged as ambiguous have
been excluded. Partners are sorted the number of annotated IDRs.

Molecular Partner WL G b6
annotated IDRs annotated proteins
Protein 417 267
DNA 76 48
Metal 39 26
RNA 33 24
Small molecule 32 27
Lipid 30 16
Inorganic Salt 1 1

Our analysis reveals only about half of the IDRs in the DisProt database have assigned functions
or partners. The IDRs found in other resources, such as MobiDB (63) and PDB (64, 65), are
entirely devoid of the functional annotations. Functional annotation of these regions as well as
need to process annotations for the millions of uncharacterized protein sequences call for
innovative and scalable solutions, one of which is the development of accurate predictive tools.
The IDRs that are already functionally annotated can be utilized to design, optimize and test
predictive models which than could be used to predict functional IDRs in the other protein
sequences. While at this point many of the IDR functions lack sufficient numbers of annotated
IDRs to merit these development efforts, several molecular functions and partners may have an
adequate amount of data to perform optimization and testing. Our analysis suggests that this
could be the case for the assembler, entropic chain and effector functions, as well as for IDRs
that interact with protein and DNA partners. Correspondingly, majority of current development
effort have concentrated on the prediction of protein-binding IDRs, with only a few methods
that target other functions and partners (41). The next section overviews a comprehensive
collection of computational predictors of IDR functions.

3 Prediction of Functions of Intrinsically Disordered Regions

We identified 25 computational predictors of functions of IDRs based on a comprehensive
literature search. To the best of our knowledge this is a complete set of published method in
this area at this point in time. Nearly all of these computational predictors were developed via a
data-driven machine learning approach. These predictive models are generated by a machine
learning algorithm using a functionally annotated training dataset. The models are optimized by
the algorithm to minimize predictive error on the training dataset. After this optimization is
completed, the models are assessed on a set aside set of test proteins where the predictions
are compared against known native annotations. The test proteins are typically required to
share low sequence identity (<30%) with the proteins in the training dataset. This is to ensure
that these predictors are capable of producing accurate results in the absence of sequence
similarity to the functionally annotated proteins. Each predictor discussed in this chapter has
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undergone this assessment and was shown to offer relatively accurate predictions, even for the
low sequence similarity proteins. This section lists the 25 computational tools and discusses
their availability, impact and predictive architectures.

3.1 Overview and Impact

The 25 predictors can be divided into two main categories: methods that target prediction of
molecular partners and methods that predict molecular functions. The current predictors in the
former category address three types of partners: proteins, DNA and RNA. The available
predictors of molecular functions are limited to the prediction of flexible linkers (a sub-category
of the entropic chains) and moonlighting/multifunctional regions. A detailed list and
classification of the 25 methods is presented Table 3. This table shows a substantial increase in
the development of these predictors in recent years. Specifically, 13 methods were published in
the last 3 year (2016-present), compared to 12 that were published in the preceding 10 years
(between 2007 and 2016).

A significant majority of the current methods (21 out of 25) predict disordered protein-binding
regions. These regions are by far the most annotated category of functional IDRs in DisProt (see
Tables 1 and 2). The 21 methods can be further subdivided based on the particular type of the
protein-binding IDRs they predict. The largest group of 16 methods focuses on predicting
molecular recognition features (MoRFs). MoRFs are short protein-binding segments (typically
between 5 and 25 consecutive residues) that undergo disorder-to-order transitions upon
binding to their protein partners and which are localized inside longer IDRs (56, 66). Several
notable examples of the MoRF predictors include the first method, alpha-MoRFpred (67, 68),
which predicts MoRFs that fold into alpha-helical conformation, the first predictor that targets
all MoRF types irrespective of their folded conformation, MoRFpred (69, 70), and several other
popular tools including MoRFChiBi (71), fMoRFpred (56), and DISOPRED3 (72). The second type
of the disordered protein-binding IDRs are short linear sequence motifs (SLiMs). SLiMs are short
conserved motifs (3 to 12 consecutive amino acids) that are involved in protein-protein
interactions (73). A list of currently known SLiMs can be collected from the Eukaryotic Linear
Motif (ELM) resource (74). While majority of SLiMs are located in IDRs, about 20% of them are
found within the structured protein domains (75). SLiMs can be predicted with the help of two
sequence-based methods: SLiMpred (76) and PSSMpred (77). Another method, PepBindPred
(78), predicts SLiMs in protein structures. Finally, three methods, ANCHOR (79, 80),
disoRDPbind (81, 82) and ANCHOR2A (83), are designed to predict a generic set of disordered
protein binding regions, which covers the short MoRFs and SLiMs and long protein-binding
IDRs.

Only four methods target predictions of the other functions of IDRs. Two predictors that are
part of the DisoRDPbind method predict IDRs that have DNA and RNA partners (81, 82). Two
methods predict molecular functions of IDRs, including DFLpred that predicts flexible linkers
(84), and DMRpred that predicts multifunctional/moonlighting IDRs (85). The latter type of IDRs
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have multiple different functions (e.g., they bind two different partners) and is commonly
found in DisProt, i.e., about 37% of IDRs in DisProt are moonlighting (41).

We also investigate impact of these methods that is quantified with their citations in the
Google Scholar. Table 3 includes total and annual numbers of citations, where the latter
measure is more suitable when comparing between methods. In total, the 25 predictors were
cited 1651 times with the median citation count of 22. Based on the annual citation numbers,
the most popular predictors are DISOPRED3 (52 citations per year), ANCHOR (39 citations per
year), alpha-MoRFpred (37 citations per year), MoRFpred (28 citations per year), and
fMoRFpred and MoRFCHiBi (each with 12 citations per year). We note that DISOPRED3's
citations could be overestimated in the context of predicting functional IDRs since this method
also predicts generic IDRs; i.e., regions without functional annotations.

Table 3 reveals that 19 of the 25 predictors are available to the research community via a
website. Among these methods, 16 are available as webservers and 11 as a source code that
must be installed and run on the end user’s hardware. Furthermore, eight methods are
available as both webserver and source code. We found that the mode of the availability is
connected with the citation levels. The median annual number of citations for the methods that
do not offer webservers is only 2, while it goes up to 11 for the methods that have webservers.
The methods that are available as the source code are cited at the annual median rate of 7, and
those that have both code and webserver at 9 citations per year. Overall, this analysis suggests
that availability of the webserver substantially boosts the usage of the corresponding
predictors.
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Table 3. Classification, citations and availability of the current predictors of IDR functions. The methods are classified based on their predictive target
(molecular partner vs. molecular function) and sub-type of the target (protein, DNA and RNA for molecular partners vs. flexible linker and moonlighting region
for molecular functions). Predictors are sorted within each sub-type by the year of publication. The citations and availability are based on information as of Feb
25, 2019. The citations were collected using Google Scholar, where the annual citations are computed as an average number of citations per year since
publication. The type of availability, shown in column “type”, is either through a webserver (WS), downloadable source code (SC), or both (WS+SC). Methods
without any availability are listed as “not available” and those for which the websites cannot be found are denoted as “no longer available”.

Citations Availability
Predictive target Year Method Ref.
Total | Annual| Type URL
2007 | alpha-MoRFpred |(67,68)| 445 37 NA | Not Available
2010 retro-MoRFs (86) 27 3 NA | Not Available
2012 MoRFpred (69, 70)| 194 28 WS | http://biomine.cs.vcu.edu/servers/MoRFpred/
2013 | MFSPSSMpred (87) 32 5 NLA | No Longer Available
2015 fMoRFpred (56) 36 12 WS | http://biomine.cs.vcu.edu/servers/fMoRFpred/
2015 DISOPRED3 (72) 206 52 WS+SC | http://bioinf.cs.ucl.ac.uk/disopred
2015 MoRFCHiBi (71) 35 12 WS+SC | https://gsponerlab.msl.ubc.ca/software/morf_chibi/downloads/
2016 | MoRFCHiBilLight (75) 22 7 WS+SC | https://gsponerlab.msl.ubc.ca/software/morf _chibi/downloads/
MoRFs 2016 | MoRFCHiBiWeb (75) 22 7 WS+SC | http://morf.chibi.ubc.ca:8080/mcw/index.xhtml
2016 Predict-MoRFs (88) 6 2 SC https://github.com/roneshsharma/Predict-MoRFs
Proteins 2017 | Wang et al. 2017 (89) 2 2 NA | Not Available
Partners 2018 | MoRFpred-plus (90) 8 7 SC https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus
2018 OPAL (91) 8 6 WS+SC | http://www.alok-ai-lab.com/tools/opal/
2018 OPAL+ (92) 0 0 WS+SC | http://www.alok-ai-lab.com/tools/opal plus/
2018 | Fangetal 2018 (93) 0 0 NA | Not Available
2019 | Sharma et al. 2019 (94) 0 0 SC https://github.com/roneshsharma/BMC Models2018/wiki.
. 2012 SLiMPred (76) 54 8 WS http://bioware.ucd.ie/~compass/biowareweb//Server pages/slimpred.php
SLMs 1016 PssMpred 77) | o 0 NLA | No Longer Available
2009 ANCHOR (79, 80)| 388 39 WS+SC | http://anchor.enzim.hu
ALL 2015 disoRDPbind (81,82)] 44 11 WS | http://biomine.cs.vcu.edu/servers/DisoRDPbind/
2018 ANCHOR2 (83) 17 10 WS+SC | https://iupred2a.elte.hu/
DNAs 2015 disoRDPbind (81,82)| 44 11 WS | http://biomine.cs.vcu.edu/servers/DisoRDPbind/
RNAs 2015 disoRDPbind (81,82)| 44 11 WS | http://biomine.cs.vcu.edu/servers/DisoRDPbind/
Functions Flexible linkers 2016 DFLpred (84) 17 8 WS | http://biomine.cs.vcu.edu/servers/DFLpred/
Moonlighting regions | 2018 DMRpred (85) 0 0 WS | http://biomine.cs.vcu.edu/servers/DMRpred/
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Table 4. Architectures of the current predictors of IDR functions. The methods are classified based on their predictive target (molecular partner vs. molecular
function) and sub-type of the target (protein, DNA and RNA for molecular partners vs. flexible linker and moonlighting region for molecular functions).
Predictors are sorted within each sub-type by the year of publication. The “Class” column shows the overall class of the predictor: machine learning (ML), ab-
initio (Al) and meta-predictors (Meta). The “Predictive Model” column specifies types of predictive models: neural network (NN), scoring function (SF), support
vector machine (SVM), Bayesian model (Bayes), logistic regression (LR), and random forest (RF). The specific elements of the input profiles are encoded as “AA”
(features computed directly from the amino acid sequence), “EVO” (evolutionary features including a position-specific scoring matrix and a hidden markov
model profile), “PSS” (putative secondary structure), “PSA” (putative solvent accessibility), “PDIS” (putative disordered regions), "PMoRF” (putative MoRF
regions), and “SQA” (sequence alignment).

Predictive target Year Method Class Predictive Contents of the input profile
model | Ap | Evo | pss | psA | PDis | PMoRF | SQA | Other information
2007 | alpha-MoRFpred ML NN v v
2010 retro-MoRFs Al SF v v v
2012 MoRFpred ML SVM v v
2013 MFSPSSMpred ML SVM v v
2015 fMoRFpred ML SVM v
2015 DISOPRED3 ML SVM v v v v
2015 MoRFCHiBi ML SVM v v v v
MORE 2016 MoRFCHiBilLight Meta Bayes v v v
2016 MoRFCHiBiWeb Meta Bayes v v v
2016 Predict-MoRFs ML SVM v v
Proteins 2017 Wang et al. 2017 ML SVM v
Partners 2018 MoRFpred-plus Meta SVM vV v v Predicted B-factors
2018 OPAL Meta SVM v v v v
2018 OPAL+ Meta SVM v v v
2018 Fang et al 2018 ML SVM v
2019 | Sharmaetal. 2019 | Meta SVM v v v v v
SLiMs 2012 SLiMPred ML NN v
2016 PSSMpred ML SVM v
2009 ANCHOR Al SF v v v
All 2015 disoRDPbind ML LR v v Sequence complexity
2018 ANCHOR2 Al SF v v v
DNAs 2015 disoRDPbind ML LR v v | Sequence complexity
RNAs 2015 disoRDPbind ML LR v v Sequence complexity
Functions Flexible linkers 2016 DFLpred ML LR v v v
Moonlighting regions | 2018 DMRpred ML RF v v v v
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3.2 Predictive Architectures

The predictive architecture of the 25 methods can be divided into three classes: methods that
rely on machine learning (ML) models, ab-initio (Al) models, and meta-predictors (Meta). The
ML models are derived with the help of machine learning algorithms. These algorithms
parametrize the models to maximize predictive quality on a functionally annotated training
datasets. Several different ML algorithms have been applied, such as neural networks, support
vector machines, Bayesian algorithms, logistic regressions, and random forests. The ab-initio
models are developed utilizing biophysical principles that are known to differentiate between
the functional regions and other parts of the protein sequences. They are typically
implemented as scoring functions. Several recently published predictors rely on meta-
architectures that combine outputs generated by several predictors of IDR functions, typically
using a predictive model derived with ML algorithms. The underlying motivation for this class of
methods is that the meta-models are expected to improved predictive performance when
compared to the use of individual predictors (95-98).

The prediction generally consists of two steps, irrespective of the architectural class. First, the
input protein sequence is converted into a profile that includes the sequence itself and a set of
selected sequence-derived characteristics. These characteristics may include evolutionary
information (such as a measures of conservation), sequence alignment, as well as putative IDRs,
putative secondary structure, and/or putative solvent accessibility. In case of the meta-
architectures, the profile consists of outputs generated by several predictors of IDR functions.
Second, the profile is input into a predictive model (ether a ML model or a scoring function)
which produces numeric scores that quantify propensity for the specific function for each
residue from the input protein sequence.

Table 4 shows that majority of the predictors fall into the ML class (16 out of 25). There are also
three ab-initio predictors and six meta-predictors. The table also reveals that different methods
utilize different information in the profile and different types of predictive models. All but three
predictors rely on the ML models, with the most popular being the support vector machine (13
out of 22 ML predictors). However, support vector machine models are used to predict only
MoRFs and SLiMs. The meta architecture-based methods are exclusively used to predict MoRFs.
This is motivated by the fact that MoRF prediction is the most mature and most populated sub-
area, which results in availability of several strong predictors that can be used as inputs for
these meta-predictors.

The scope of the profiles varies widely between different predictors, as shown in Table 4. We
break down the profiles into seven major components that are used across the 25 predictors:
information computed directly from the amino acid sequence, evolutionary information,
putative secondary structure, putative solvent accessibility, putative MoRF regions, putative
disordered regions, and sequence alignment. Virtually all predictors use information obtained
directly from the input protein sequence, which typically includes amino acid composition and
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physicochemical properties of the amino acids, such as hydrophobicity and polarity. The second
most popular element of the profile is the evolutionary information, which is encoded in the
form a position-specific scoring matrix or a hidden Markov model profile. The least popular
components of the profile include putative secondary structure and solvent accessibility.
Furthermore, we observe that the contents of the profiles are unique to each predictor, ranging
from simple architectures that use a single element to complex profiles that include as many as
five elements.

4 Case Studies

We explain and illustrate the disorder function predictions using two proteins that feature
different types of functional IDRs. Both case studies show results generated by the same set of
five predictors: ANCHOR2, DISOPRED3 and the three predictive models included in
DisoRDPbind, the only method capable of predicting DNA- and RNA-binding IDRs.

In general, these and other predictors output a numerical propensity score, which quantifies
likelihood for a given function for each residue in the input protein sequence. These propensity
scores are converted into a binary prediction (functional vs. non-functional residue) with a help
of predictor-specific thresholds. More specifically, residues with propensities exceeding the
threshold are assumed to be functional, while the remaining residues are annotated as non-
functional.

The first case study is the RNA polymerase subunit 13 from Saccharolobus shibatae (UniProt id:
B8YB65), which is a regulator of transcription. This protein has two IDRs (positions Met-1 to
Glu-32 and Lys-83 to Gly-104) that were annotated using circular dichroism and NMR
spectroscopy (DisProt id: DP01001) (99). Figure 2 shows predictions of disorder for this protein
using several popular disorder predictors (41, 100, 101) that include VSL2B (102), IUPred2A
(103), disCoP (95, 96) and DISOPRED3 (104). Both IDRs are found by each of the four predictors,
however, these methods are unable to annotate these regions functionally. The two IDRs were
shown to interact with DNA and proteins, including the transcription initiation factors TFIIF and
TFIIE (105). Figure 3 shows that the three predictors of protein partners (ANCHOR2, DISOPRED3
and DisoRDPbind) correctly identify the protein-binding IDR at the N-terminus. The ANCHOR2’s
predictions (in pink) is fragmented into two regions, one of which extends beyond the native
annotation. However, the propensities generated by ANCHOR2 in this part of the sequence are
in general high (above or marginally below the threshold) suggesting a high likelihood for
protein binding. The protein-binding IDR at the C-terminus is detected only by DISOPRED3 (in
orange). DisoRDBbind successfully find the DNA-binding region at the C-terminus (in teal), while
it fails to identify that the IDRs at the N-terminus also interacts with DNA. Overall, this example
reveals that both IDRs can be found and functionally annotated by the current methods, with
the exception of the DNA interaction at the N-terminus.
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Figure 2. Predictions and native annotations of the disorder for the RNA polymerase subunit 13 (UniProt id:
B8YB65). Native annotations, which are shown in red (disordered regions) and blue (structured regions), were
collected from the DisProt database (DisProt id: DP01001). Predictions of IDRs (shown using shades of gray) were
generated with VSL2B, IUPred2A, disCoP and DISOPREDS3. The solid line curves denote the numerical propensities,
dashed horizontal line gives the threshold used to convert propensities into the binary predictions for all four
predictors, and the horizontal bands at the bottom correspond to the binary predictions and native annotations.

mmm Native Disorder m== DisoRDPhind DNA Binding
mm Native Order wem DisoRDPhind Protein Binding
= Native DNA Binding e ANCHOR

== Native Protein Binding === Disopred3

1.0
" '3
gg¢ g8
EE 3 0.8 EE H
= @
2E> 2ez
[T Z3h
5% € =54
cr % 0.6 a3
o] [=pg =
ame o b
ge 2
85 0.4 a8z
[=]"] =
(=] <
E
= 0.2 4
0.0
Native Disorder/Order
Native DNA Binding
DisoRDPbind DNA Binding 4

Native Protein Binding
DisoRDPbind Protein Binding
ANCHOR2 T ——
Disopred3 : | : 5

20 20 60 80 100
Sequence Position

Figure 3. Predictions and native annotations of the disorder functions for the RNA polymerase subunit 13
(UniProt id: B8YB65). Native annotations, which are shown in red (disordered regions), blue (structured regions),
brown (IDRs interacting with DNA), and dark green (IDRs interacting with proteins), were collected from the
DisProt database (DisProt id: DP01001). Predictions of protein-binding IDRs were generated with DisoRDPbind
(light green), ANCHOR2 (pink) and DISOPRED3 (orange). Predictions of DNA-binding IDRs were generated with
DisoRDPbind (teal). The solid line curves denote the numerical propensities, dashed horizontal lines correspond to
the thresholds and the horizontal bands at the bottom give the binary predictions and native annotations.
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The second case study is the 50S ribosomal protein L11 from Geobacillus stearothermophilus
(UniProt id: P56210). This protein forms ribosomal stalk that facilitates interaction with the
GTP-bound translation factor. In contrast to the first case study, where IDRs are located at the
sequence termini, this protein has two short IDRs in the middle of the chain (positions Thr-59 to
Lys-63, and positions Glu-76 to Thr-91). Both disordered regions were characterized by Nuclear
Magnetic Resonance and the second region is known to interact with RNA (DisProt id: DP00512)
(106, 107). Results of disorder predictions with VSL2B, IUPred2A, disCoP and DISOPRED3,
which are shown in Figure 4, reveal that the second IDRs is predicted by all four methods.
VSL2B over-predicts disorder in this protein and three predictors (VSL2B, IUPred2A and disCoP)
incorrectly identify disorder at the N-terminus. Sequence of this protein was used to make
predictions of IDR functions with DisoRDPbind, ANCHOR2, and DISOPRED3 and the results are
visualized in Figure 5. DisoRDPbind correctly identifies the RNA-binding IDRs (in teal). The
DisoRDPbind’s propensity scores in this region are very high suggesting high confidence for this
prediction. Results generated by the three predictors of protein-binding IDRs reveals that they
do not predict these regions; i.e., propensities generated by these methods are relatively low
and well below the corresponding thresholds that are shows with dashed horizontal lines. The
only exception are the propensity values generated by DISOPRED3 in the vicinity of positions
771 to 79S which are relatively high, although they still remain below the cut-off value. In the
nutshell, this example demonstrates that the second IDR that interacts with RNA is correctly
identified by DisoRDPbind. This method also makes a correct determination that the first IDRs
does not interact with RNA. Moreover, the three predictors of IDRs that partner with proteins
correctly identify that neither of the two IDRs is binding proteins.
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Figure 4. Predictions and native annotations of the disorder for the 50S ribosomal protein L11 (UniProt id:
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collected from the DisProt database (DisProt id: DP00512). Predictions of IDRs (shown using shades of gray) were
generated with VSL2B, IUPred2A, disCoP and DISOPREDS3. The solid line curves denote the numerical propensities,
dashed horizontal line gives the threshold used to convert propensities into the binary predictions for all four
predictors, and the horizontal bands at the bottom correspond to the binary predictions and native annotations.
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Figure 5. Predictions and native annotations of the disorder functions for the 50S ribosomal protein L11 (UniProt
id: P56210). Native annotations, which are shown in red (disordered regions), blue (structured regions), and brown
(IDRs interacting with RNA), were collected from the DisProt database (DisProt id: DP00512). Predictions of
protein-binding IDRs were generated with DisoRDPbind (light green), ANCHOR2 (pink) and DISOPRED3 (orange).
Predictions of RNA-binding IDRs were generated with DisoRDPbind (teal). The solid line curves denote the
numerical propensities, dashed horizontal lines correspond to the thresholds and the horizontal bands at the
bottom give the binary predictions and native annotations.
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5 Summary and Prospective Advances

The growing body of experimental and computational studies demonstrates the diversity and
abundance of functions that are carried out by IDRs (5, 17, 19, 21, 27, 43, 51, 73, 108-113). This
chapter focuses on the computational predictions of these functions from protein sequences.
We cover 25 methods that address prediction of IDRs that interact with proteins, DNA and RNA,
which form flexible linkers and that moonlight molecular functions. We show that most of
these methods are available online, are relatively well-cited and many were developed over the
last few years. Our empirical analysis reveals that methods that are available as webservers
attract substantially more citations, suggesting that they are utilized as higher rate than the
methods that do not offer this option. We also argue that the predictions generated by these
tools are relatively easy to interpret and that they provide useful functional clues, as we
demonstrated in the two case studies.

While these methods utilize a wide range of predictive architectures, a significant majority of
them rely on machine learning-derived models. The most often used machine learning
algorithms are support vector machines and regression. Given the recent rapid advances in the
deep learning technologies (114) and their adoption in the bioinformatics area (115, 116), we
believe that prediction of functions of IDRs would also benefit from the introduction of these
models. The deep neural networks are already used to predict generic IDRs showing that these
models produce accurate predictions (117-120). We anticipate that a similar boost in predictive
performance could be gained by adopting these models for the prediction of functional IDRs.
One potential obstacle is the fact that the training datasets in this area are relatively small. The
limited amount of functionally annotated IDRs may hamper learning of accurate deep network
models that typically require large training datasets.

In spite of the fact that many new predictors were published in the past few years, they focus
on a very narrow range of functions. We found that 84% of current methods (21 out of 25)
focus on the predictions of IDRs that partner with proteins. While this can be explained by the
availability of the larger number of the corresponding functionally annotated IDRs (Table 2),
other types of molecular functions and partners of IDRs deserve an equal amount of attention.
This is arguably a particularly acute problem in the case of IDRs that bind DNA and RNA, given
the fact that IDRs are known to be heavily involved in the protein-nucleic acids interactions (16,
18, 20, 27, 31, 112, 121-124). While dozens of computational tools are available to predict RNA-
and DNA-binding regions in structured proteins and protein regions (125-138), there is only one
such method for the disordered regions, DisoRDPbind (81, 82). Similar problem is apparent for
the prediction of molecular functions associated with IDRs. There are currently only two such
tools that were developed very recently, DFLpred (84) and DMRpred (85). There seems to be
sufficient amount of functionally annotated IDRs to develop new methods that would target
prediction of assemblers and effectors (Table 1), besides the currently covered entropic chains.
Therefore, we encourage the bioinformatics community to focus their efforts on the
development of a broad ranges of computational predictors of disorder functions.
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Finally, prediction of disorder functions could be a time-consuming and difficult, especially
when working with large datasets of proteins (i.e., proteins families or whole proteomes) and
when wanting to predict multiple functions. Most of the current predictors can make
predictions for one protein at the time. Moreover, prediction of multiple functions would
require using several different webservers. The first problem is already solved for the prediction
of generic disorder (41, 100), where the end users can take advantage of two large-scale
databases of disorder predictions: D?P? (139) and MobiDB (63, 140). The putative disorder
functions should be included in these databases in the near future. In fact, MobiDB already
includes predictions of protein-binding IDRs generated with the ANCHOR method. The second
issue could be accommodated by the development of a large predictive resource that would
provide access to a comprehensive set of predictors. Several of these resources are already
available for the prediction of structural aspects of proteins, including SCRATCH (141),
PredictProtein (142) and MULTICOM (143). A similar solution should be released for the
prediction of disorder and disorder functions.
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