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Abstract 

Although RNA-binding proteins (RBPs) are known to be enriched in intrinsic disorder, no previous 
analysis focused on RBPs interacting with specific RNA types. We fill this gap with a comprehensive 
analysis of the putative disorder in RBPs binding to six common RNA types: messenger RNA (mRNA), 
transfer RNA (tRNA), small nuclear RNA (snRNA), non-coding RNA (ncRNA), ribosomal RNA 
(rRNA), and internal ribosome RNA (irRNA). We also analyze the amount of putative intrinsic disorder 
in the RNA-binding domains (RBDs) and non-RNA-binding-domain regions (non-RBD regions). 
Consistent with previous studies, we show that in comparison with human proteome, RBPs are 
significantly enriched in disorder. However, closer examination finds significant enrichment in predicted 
disorder for the mRNA-, rRNA- and snRNA-binding proteins, while the proteins that interact with 
ncRNA and irRNA are not enriched in disorder and the tRNA-binding proteins are significantly depleted 
in disorder. We show a consistent pattern of significant disorder enrichment in the non-RBD regions 
coupled with low levels of disorder in RBDs, which suggests that disorder is relatively rarely utilized in 
the RNA-binding regions. Our analysis of the non-RBD regions suggests that disorder harbors 
posttranslational modification sites and is involved in the putative interactions with DNA. Importantly, 
we utilize experimental data from DisProt and independent data from Pfam to validate the above 
observations that rely on the disorder predictions. This study provides new insights into the distribution of 
disorder across proteins that bind different RNA types and the functional role of disorder in the regions 
where it is enriched.  

1 Introduction 

The RNA-binding proteins (RBPs) are involved in a wide spectrum of cellular functions including 
regulation of gene expression, post-transcriptional regulations, and protein synthesis [1, 2]. RBPs interact 
with several different types of RNAs including messenger RNA (mRNA), transfer RNA (tRNA), small 
nuclear RNA (snRNA), non-coding RNA (ncRNA), ribosomal RNA (rRNA), and internal ribosome RNA 
(irRNA) [3-5]. Many techniques have been developed and utilized to identify and characterize 
interactions between RBPs and RNAs. The X-ray crystallography and nuclear magnetic resonance 
produce structures of protein-RNA complexes that are used to study these interactions and the interacting 
interfaces at the atomic level [6-8]. However, these structures are available for a relatively few RBPs. 
Other methods, such as next-generation sequencing and protein mass spectrometry, are applied to study 
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protein-RNA interactions at the coarser sequence level. They are used on a large scale to identify binding 
regions in the sequences of RBPs and their corresponding transcripts [3, 4, 9-11]. However, they do not 
provide information about structural states of these sequences. Interestingly, sequences of RBPs include 
ordered regions that fold into well-defined tertiary structures and intrinsically disordered regions (IDRs) 
that lack well-defined 3-D structure, are highly flexible and form heterogeneous ensembles of 
interconverting conformations [12-15]. Recent studies suggest that proteins with IDRs are common in 
nature [16-18] and that RBPs are significantly enriched in IDRs [19-22]. The IDRs in RBPs were shown 
to carry out many functional roles [20, 23-26]. For instance, IDRs are prone to include posttranslational 
modification (PTM) sites that facilitate regulation of protein-RNA interactions [20, 23, 26]. They also 
contribute to the formation of ribonucleoprotein granules and ribosomal assembly through their 
involvement in the underlying protein-protein interactions [20, 23, 25-27]. Furthermore, IDRs serve as 
flexible linkers that enable cooperative interactions between multiple RNA-binding regions [25, 28]. 
Finally, there are also examples of IDRs that directly interface with the interacting RNA [25]. 

While the broad family of RBPs was already shown to be enriched in IDRs [19-22], studies that 
investigate RBPs interacting with specific RNA types are lacking. We only found works focusing on 
protein-mRNA interactions which demonstrate that these RBPs are also highly disordered [24, 29]. 
However, the amount and potential enrichment of disorder in RBPs that interact with the other RNA types 
is still an open question. We also note the lack of a systematic genome-wide analysis of functions of IDRs 
in RBPs, particularly examining presence of disorder in the RNA-binding domains (RBDs), which are the 
sequence regions that directly interface with RNA. To this end, we quantify the amount and enrichment of 
predicted disorder in RBPs that interact with the six main types of RNAs: mRNA, tRNA, snRNA, 
ncRNA, rRNA, and irRNA, in the human proteome. We also investigate functions of disorder in RBPs by 
analyzing presence and amount of putative disorder in RBDs and in the other sequence regions of human 
RBPs. This way, we aim to answer an intriguing question whether the disorder is directly implicated in 
the protein-RNA interaction or whether it facilitates other functions of RBPs. Moreover, we use 
experimental disorder annotations to validate and confirm these results. Our approach follows past studies 
that similarly rely on disorder predictions that are often supported by a smaller scale analysis of the 
experimental data [20-22, 24].  

2 Materials and Methods 

2.1 Datasets 

We study disorder in RBPs in the human proteome. We select this proteome because of the high coverage 
by the experimental annotations of disorder (i.e., the most populated organism in the DisProt database 
[30]) and RBPs [3-5], and very high completeness level; i.e., its BUSCO (Benchmarking Universal 
Single-Copy Orthologs) score is 99.5% [31]. We collect human proteome from version 2021_01 of 
UniProt database (Proteome ID: UP000005640). We exclude protein fragments and peptides by removing 
sequences annotated in UniProt with term “Fragment” or having < 30 amino acids. Next, we annotate 
RBPs in the remaining set of human protein by collecting the RBP encoding genes released across three 
recent large-scale studies of human RBPs [3-5]. After mapping these three gene sets to the UniProt 
accession numbers we manage to annotate 1,544 RBPs. This number is in line with a recent study that 
estimated the number of human RBPs to be 1,511 via a comprehensive computational prediction [32]. 
Next, we utilize the annotations of RBDs, which are the sequence elements that directly bind RNAs [33, 
34], to further screen the list of human RBPs. Importantly, the knowledge of the location of RBDs is 
necessary for us to study the disorder functions based of the potential co-location of IDRs and RBDs. We 
identify RBDs among the 1,544 proteins using version 33.1 of the Pfam database [35], resulting in the 



Page | 3 
 

final set of 1,112  RBPs that were identified as human RBPs in recent studies [3-5] and have at least one 
RBD. Furthermore, we analyze potential impact of the removal of 1,544 – 1,112 = 423 RBPs that lack 
annotations of RBDs. Using the data introduced in Section 2.2, we find no statistically significant 
difference in the amount of disorder between these 423 proteins and the 1,112 RBPs, for which we 
identified RBDs. This suggests that the use of the 1,112 RBPs, which facilitates examination of the co-
location of IDRs and RBDs, should not affect our analysis of the disorder enrichment and functions. We 
divide the 1,112 RBPs into subgroups based on the type of RNAs that they interact with, which we 
collected from the source studies [3-5]. We remove the subgroups with low counts of RBPs (≤30 
proteins) since their numbers would be insufficient to perform reliable statistical analysis. Consequently, 
we annotate RBPs that interact with six RNA types: mRNA (480 RBPs), irRNA (148), tRNA (121), 
rRNA (82), ncRNA (80), and snRNA (54).  

2.2 Annotation of Intrinsic Disorder, Posttranslational Modifications Sites, DNA-binding 
Residues, and Pfam Domains 

We collect experimentally annotated disorder from the DisProt database [30]. We secure disorder 
annotations for 57 RBPs based on mapping human proteins included in DisProt. This dataset is available 
in the Supplementary Dataset S1. Given the sparsity of the experimental data, we also collect putative 
disorder annotations for the entire human proteome. The experimental annotations are used to validate the 
proteome-scale result that rely on the disorder predictions. The use of the disorder predictions is 
motivated by fact that they were shown to be very accurate [36-40], particularly when applied to the 
nucleic acid binding proteins [41]. Numerous recent studies of disorder function and abundance similarly 
rely on the disorder predictions [20-22, 24, 27, 42-47]. Arguably the most accurate option is to utilize 
consensus-based predictors, defined as the methods that combine results produced by multiple “base” 
disorder predictors. The consensus prediction is designed to provide higher predictive performance 
compared to the base predictors used individually [48-50]. Two databases that provide convenient access 
to several disorder predictions are available: D2P2 [51] and MobiDB [52, 53]. We use the pre-computed 
consensus disorder predictions from the larger and more up-to-date MobiDB database [54]. This 
consensus utilizes majority vote approach to combine results generated by a comprehensive collection of 
ten disorder predictors: PONDR-VSL2B [55], GlobPlot [56], JRONN [57], two versions of DisEMBL 
that predict hot loops and disordered regions identified using X-ray structures [58], two versions of 
IUPred for predicting short and long IDRs [59, 60], and three versions of ESpritz that were developed 
using annotations of disorder generated form the X-ray structures, NMR structures, and using data from 
the DisProt database [61]. Our approach improves over the related studies that analyze enrichment of 
disorder in the RNA-binding proteins using either a single disorder predictor [20, 21, 24] or a consensus 
of five methods [22].  

We also collect functional features that are potentially associated with the presence of disorder including 
the PTM sites as well as DNA-binding and protein-binding regions. These annotations can be collected at 
the residue level (i.e., for each amino acid in the protein sequence) and as the domain level (i.e., for 
protein domains). The residue and domain level annotations are derived using fundamentally different 
approaches. This allows us to cross check whether the amount and enrichment of disorder in RBDs, 
DNA-binding domains and PTM sites generated based on the residue-level data agree with the results 
derived from the domain-level data. 

We use the D2P2 database to collect experimental residue-level annotations of the PTM sites that were 
originally sourced from the PhosphoSitePlus resource [62]. Besides utilizing PTM sites collectively, we 
analyze disorder for the four most numerous PTM types: phosphorylation, ubiquitination, acetylation and 
methylation, which are in sufficient numbers to perform reliable statistical analysis. We also collect 
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putative annotations of the disordered residues that bind DNA and that bind proteins that we generate 
with the DisoRDPbind predictor [63, 64]. This is the only tool capable of producing these residue-level 
annotations. DisoRDPbind was shown to produce accurate predictions [40], is sufficiently fast to process 
the human proteome, and its pre-computed results can be conveniently collected from the DescribePROT 
database [65]. 

We rely on Pfam to collect the domain-level data. We combine the Pfam clan data (Pfam version 33.1) 
[35] and Gene Ontology (GO) data from Pfam2GO (version 2020_06) [66] to identify and categorize 
domains in RBPs. We categorize these domains into four types: RBDs, DNA-binding domains, domains 
with PTM sites (PTM domains), and other domains. We derive annotations of the PTM domains using the 
function description in the Pfam clan data, which lists specific PTM types. We do not annotate the 
protein-binding domains since the residue-level results do not suggest enrichment in the disorder. The 
residue and domain-level annotations of the PTMs, putative disorder and DNA binding for the RBPs and 
the other human proteins are available in the Supplementary Datasets S2 for the human RBPs and 
Supplementary Datasets S3 for the other human proteins. 

2.3 Computational and Statistical Analysis 

We quantify the amount of disorder in a given protein or protein region/domain with the disorder content, 
which is defined as the number of disordered residues in that protein/region divided by the length of the 
sequence of that protein/region. We also compute the content of DNA-binding and protein-binding 
residues and domains, and PTM sites and domains in disordered regions (i.e., the number of PTM sites in 
disordered regions divided by the number of disordered residues in the disordered regions) to investigate 
potential cellular functions of disordered regions.  

We investigate enrichment of disorder by assessing significance of differences in the disorder content 
computed for RBPs and subgroups of RBPs that interact with specific RNA types against corresponding 
reference disorder content values computed for the other human proteins. We similarly study enrichment 
of DNA-binding domains/residues, protein-binding residues, PTM domains/residues in disordered regions 
located in non-RBD regions, which are defined as sequence regions in RBPs that exclude RBDs. We 
assess this enrichment for RBPs and the subgroups of RBPs by evaluating significance of differences 
when comparing the corresponding binding/PTM content values against reference content computed for 
the other human proteins. The reference human proteins and regions are selected at random and length-
matched to the length of the RBPs, RBDs, and disordered regions in non-RBD regions. The length-
matching is motivated by the fact that sequences of RBPs are on average substantially longer than the 
sequences of other human protein (Supplementary Table S1). This accommodates for the known bias in 
the disorder content across proteins that have different sequence length [67]. Similar procedure was used 
in several recent studies [42, 45, 68, 69]. We perform these tests based on bootstrapping 50% of the 
proteins/domains 100 times. We compare the corresponding content measurements using the student t-test 
if the data are normal; otherwise, we use the Wilcoxon signed-rank test. We test normality with the 
Anderson-Darling test at the 0.05 significance. 

3 Results 

3.1 Putative Intrinsic Disorder is Enriched for Some of the RNA-binding Proteins 

We quantify the amount and enrichment of the putative disorder in all human RBPs and the RBPs that 
interact with several specific RNA types. Figure 1 shows distributions of the disorder content for proteins, 
domains, and regions outside the domains in the human proteome, the complete set of 1,112 RBPs, the 
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RBPs that interact with mRNA, irRNA, tRNA, rRNA, ncRNA, and snRNA and for their corresponding 
human reference sets. We summarize the corresponding numeric results in the Supplementary Table S1. 
The median putative disorder content in the human proteome is 0.13 (Figure 1(a)), which agrees with 
recent studies that reported the disorder content of 0.15 [70] and 0.13 [71]. The median disorder content 
for RBPs is over 30% higher and equals 0.17 (Figure 1(b)). We find that this enrichment is statistically 
significant (p-value < 0.05) and consistent with studies, which similarly showed that RBPs are 
significantly enriched in the intrinsic disorder [19, 20]. 

Next, we investigate whether the enrichment in the putative disorder content is consistent across RBPs 
that interact with specific types of RNAs. Figure 1(b) provides distributions of the protein-level putative 
disorder content in the human RBPs, the six common types of RBPs, and their corresponding human 
reference sets. The median putative disorder content in the most disorder-enriched and the largest 
subgroup of RBPs that interact with mRNA is 0.25 (Supplementary Table S1), which nearly doubles the 
median disorder content in the human proteome. This is in line with the published studies that similarly 
find that mRNA-binding proteins are enriched in disorder [24, 29]. However, we are the first to study the 
enrichment for the other five types of RBPs that bind ncRNA, irRNA, rRNA, snRNA, and tRNA. We 
find that RBPs that interact with rRNA and snRNA are also significantly enriched in disorder (p-
value<0.05). However, the putative disorder content is on par with the expected/proteome-wise content 
values for the ncRNA-binding (content = 0.11) and irRNA-binding (content = 0.13) proteins and is 
actually significantly depleted in RBPs that bind tRNA (content = 0.08; p-value < 0.05). Our analysis 
reveals that putative intrinsic disorder is unevenly distributed across different subgroups of RBPs. To 
summarize, we show that the overall statistically significant enrichment of RBPs in putative disorder is 
driven by the significant enrichment for the mRNA-, rRNA- and snRNA-binding proteins, while the 
protein-level disorder content for the tRNA-binding proteins is significantly depleted.  

 

Figure 1. Distributions of the putative disorder content in the human proteome, human RBPs, and across subgroups of 
RBPs that bind specific RNA types. The blue/orange/green violin plots in panel (a) show the distribution of the protein-level 
disorder content calculated across human proteome (HP)/Pfam domains in human proteome (HD)/non-domain regions in human 
proteome (non-HD). The box-plots inside the violin plots give the 95 percentile, 75 percentile, median, 25 percentile, and 5 
percentile values for a given distribution. The dark-shaded parts of the violin plots show the distribution of the putative disorder 



Page | 6 
 

content for RBPs and the six RBP types calculated at the protein level in panel (b), for RBDs in panel (c), and for non-RBD 
regions (i.e., the sequence regions in RBPs that exclude RBDs) in panel (d). The light-shaded parts of these violin plots give the 
putative disorder content for the corresponding reference human data, which we sample to equalize the sequence length. The 
dashed lines inside the violin plots denote the 75 percentile, median, and 25 percentile values for a given distribution. “*” at the 
top of a given plot denotes that a given distribution is significant different compared to the corresponding sampled reference 
human proteome distribution (p-value<0.05). We detail the statistical tests in Section 2.3. 

3.2 Putative Intrinsic Disorder is Not Enriched in the RNA-binding Domains 

While the putative intrinsic disorder is significantly enriched in the mRNA-, rRNA- and snRNA-binding 
proteins, it is unclear whether it is present in RBDs. We analyze the putative disorder content in RBDs in 
the complete set of RBPs and in each of the six subgroups of RBPs (Figure 1(c) and Supplementary 
Table S1). The median of the putative disorder content values in RBD across all RBPs equals 0.0. The 
median disorder content in RBD across the RBPs that bind different types of RNA is also 0.0 for all RNA 
types, except for irRNA where the content is also low and equals 0.04. We quantify significance of the 
differences between the disorder content of RBDs and the domains in a corresponding sampled (length-
matched) reference set of human proteins. We find that the putative intrinsic disorder of RBDs in the 
complete set of RBPs and for each of the six subgroups of RBPs is not significantly enriched when 
compared to the reference disorder content computed for domains in human proteins that exclude RBPs 
and RBD regions (p-value > 0.05). This result combined with the overall enrichment of putative disorder 
in RBPs suggests that disorder is localized outside of RBDs, which we dub non-RBD regions. Indeed, our 
empirical analysis of the putative disorder content in the non-RBD regions of RBPs shows that their 
median disorder content is high and equals 0.29 and is statistically significantly higher than the putative 
disorder content in RBDs (p-value < 0.05).  

3.3 Enrichment of the Putative Intrinsic Disorder in the non-RBD Regions is Consistent 
with the Enrichment for the RNA-binding Proteins 

Figure 1(d) shows the distributions of the putative disorder content for the non-RBD regions in RBPs and 
in subgroups of RBPs that interact with specific RNA types. The putative median disorder content for the 
non-RBD segments in RBPs equals 0.29, compared to the median content of 0.22 for the reference non-
domain regions in the human proteome (Supplementary Table S1). The difference between these 
content measurements is statistically significantly (p-value < 0.05). The putative disorder content values 
for the non-RBD regions across the six subgroups of RBPs vary between 0.18 (tRNA-binding proteins) to 
0.38 (snRNA-binding proteins). Our analysis suggests that the enrichment of putative disorder in the non-
RBD regions for the mRNA-, rRNA- and snRNA-binding proteins is significant when compared to the 
corresponding human reference set (p-value < 0.05). In contrast, the putative disorder is significantly 
depleted for the tRNA-binding proteins (p-value < 0.05), and the difference in the disorder content is not 
significant for the ncRNA- and irRNA-binding proteins. These results are consistent with the findings for 
the full sequences of RBPs, suggesting that putative disorder is primarily located in the non-RBD 
sequence segments. 

3.4 Patterns in the Enrichment of the Putative Intrinsic Disorder are Consistent with the 
Enrichment of the Experimentally Annotated Disorder 

The above analysis relies on the putative disorder produced by an accurate consensus prediction that we 
collect from the popular MobiDB resource [52, 54]. We validate these results based on the analysis of the 
experimental disorder that we collect from DisProt for a subset of 57 RBPs [30]. We compare the results 
for the generic set of RBPs. The relatively small size of the experimental dataset prevents us from 
performing this analysis across the six subgroups of RBPs. We observe that the native median disorder 
content in the RBDs and in the non-RBD regions across the 57 RBPs is 0.03 and 0.35, respectively. The 
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difference in the disorder content in RBDs against in non-RBD regions is statistically significantly (p-
value<0.05), which demonstrates that the native disorder in enriched in the sequences of RBPs outside of 
the RNA-binding regions. These values are very similar to the median content for the complete set of 
1,112 RBPs computed using the putative disorder, which are 0.00 and 0.29, respectively, and which are 
also significantly different (p-value < 0.05). Further analysis using the putative disorder for the same set 
of 57 RBPs provides consistent results, with the median disorder content in RBDs of 0.00 and in non-
RBD regions of 0.41, where the corresponding difference is statistically significant (p-value < 0.05). The 
increase in the putative disorder content for the 57 RBPs from DisProt compared to the content for the 
complete set of 1,112 RBPs can be explained by the fact that DisProt specifically focuses on the proteins 
that have IDRs. To sum up, our analysis of both putative and experimental disorder annotations reveals a 
consistent pattern of the statistically significant disorder enrichment in the non-RBD regions and low 
amounts of disorder in RBDs. This motivates us to investigate potential functions of disorder in the non-
RBD regions of the RBP sequences.  

 
Figure 2. Distributions of the content of experimental PTM sites (panel (a)), putative DNA-binding residues (panel (b), 
and putative protein-binding residues (panel (c)) in the putative disordered regions located in non-RBD regions in the 
human RBPs and across several subgroups of RBPs that bind specific RNA types. We exclude the disordered non-RBD 
regions < 10 residues long and cover the four subgroups of RBPs that have at least 30 proteins with these disordered regions to 
ensure that statistical analysis is robust. The dark-shaded parts of the violin plots show the distribution of the content values in 
non-RBD regions for RBPs and the four RBP types that satisfy the above criteria. The light-shaded parts of the violin plots show 
the content values for the corresponding non-domain regions in the reference human set (non-HD), which we sample to equalize 
the sequence length. The dashed lines inside the violin plots give the 75 percentile, median, and 25 percentile values for a given 
distribution. “*” at the top of a given plot denotes that a given distribution is significant different compared to the corresponding 
sampled reference human proteome distribution (p-value<0.05). We detail the statistical tests in Section 2.3. 

3.5 Putative Intrinsic Disorder in non-RBD Regions Facilitates DNA-binding and Hosts 
PTM sites  

We investigate functions of disorder in the non-RBD regions in RBPs by evaluating potential enrichment 
of the content of the putative DNA-binding and protein-binding residues and experimental PTM sites 
among intrinsically disordered regions located in the non-RBD regions in RBPs. Figure 2 provides 
distributions of the protein-level content of these three types of functional residues localized in disordered 
regions in RBPs, in the mRNA-, ncRNA-, rRNA- and tRNA-binding proteins, and in the human proteome 
that we use as a reference set. We limit our analysis to the four types of RBPs that include sufficient 
amount of data to warrant robust statistical analysis (i.e., at least 30 proteins that have sufficient amount 
of disorder, as we detail in the caption for Figure 2). Supplementary Table S2 provides the 
corresponding median values, including the medians for each length-matched reference content based on 
the human proteome. 

The putative DNA-binding residues constitute about 7% of disordered regions located in non-RBD 
regions and they are significantly enriched compared to the reference proteome-level data (p-value<0.05). 
The analysis over the four RNA types shows significant enrichment for the RBPs that interact with rRNA 
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and tRNA where putative DNA-binding residues (Figure 2(b)) account for 3.2% (tRNA-binding 
proteins) and 20.2% (rRNA-binding proteins) of their disordered regions (p-value<0.05). In contrast, 
Figure 2(c) reveals that putative protein-binding residues are not enriched among the disordered residues, 
when compared to the reference data (p-value > 0.05). They account for 7.2% of the putative disordered 
residues in the non-RBD regions in RBPs, when compared to their content of 5.8% among the putative 
disordered regions in the corresponding human reference set. However, the PTM sites (Figure 2(a)), 
which comprise 3.3% of the putative disordered regions in the non-RBD segments, are significantly 
enriched and this holds true for the mRNA-, ncRNA-, rRNA- and tRNA-binding proteins (p-value < 
0.05). 

While Figure 2(a) shows the per-protein distribution of content across all PTMs, we also breakdown this 
analysis by several major types of PTMs. Given the scarcity of the PTM sites, we reanalyze the data at the 
residue-level. We subsample 10% of the disordered residues in the non-RBD regions for RBPs and for 
each of the four subgroups of RBPs and calculate content of specific PTM types among these residues. 
We repeat that 100 times and compare the resulting distributions of the content values to the reference 
data computed in the same way in the human proteome. We compare the resulting residue-level content 
values for different types of PTMs including phosphorylation, ubiquitination, acetylation, and 
methylation among the disordered regions in the non-RBD segments in Table 1. We find that the residue-
level analysis is consistent with the protein-level analysis and reveals that PTM sites in the disordered 
regions that exclude RNA-binding domains are significantly enriched in RBPs (p-value < 0.05). 
Moreover, we show that the four major types of PTM sites (phosphorylation, ubiquitination, acetylation 
and methylation) are consistently significantly enriched in the disordered regions localized in non-RBD 
segments across all groups of RBPs; the only exception are the methylation sites that lack enrichments for 
tRNA-binding proteins.  

Table 1. Residue-level content of PTMs and specific types of PTMs in putative disordered regions in the non-RBD 
segments in human RBPs and across several subgroups of RBPs that bind specific RNA types. We subsample 10% of the 
disordered residues in the non-RBD regions for RBPs and for each of the four subgroups of RBPs and calculate content of 
specific PTM types among these residues. We repeat that 100 times and compare the resulting distributions of the content values 
to the reference data computed in the same way in the human proteome. We report median and the 75th percentile of the PTM 
content for each considered protein set. The bold and red font represents significant enrichment in PTMs when compared to the 
corresponding reference set (p-value<0.05). We detail the statistical tests in Section 2.3. 

RNA type 
Median (75 percentile) of the content of PTM sites in putative disordered non-RBD regions 

All PTMs Phosphorylation Ubiquitination Acetylation Methylation 
All RNAs 0.054 (0.059) 0.045 (0.049) 0.003 (0.004) 0.003 (0.004) 0.003 (0.004) 
mRNA 0.061 (0.068) 0.053 (0.058) 0.003 (0.004) 0.002 (0.004) 0.004 (0.005) 
ncRNA 0.040 (0.045) 0.035 (0.040) 0.001 (0.002) 0.003 (0.005) 0.001 (0.001) 
rRNA 0.046 (0.048) 0.037 (0.040) 0.004 (0.005) 0.004 (0.005) 0.001 (0.001) 
tRNA 0.042 (0.046) 0.033 (0.037) 0.006 (0.007) 0.003 (0.004) 0.000 (0.000) 

The above results imply that disordered regions outside of the RBDs in RBPs are involved in DNA-
binding and host PTM sites. We validate these results using an independent source of data collected from 
Pfam. We annotate DNA-binding and PTM Pfam domains in RBPs and map them into the non-RBD 
segments that have disordered residues. We identified these domains in 29 RBPs and we list them in 
Supplementary Table S3. We use these data to investigate whether the prevalence of these domains in 
RBPs is significantly enriched when compared against the sampling of these domains in the human 
proteome. To do that, we randomly select half of all Pfam domains in RBPs and calculate the fraction of 
the annotated above PTM or DNA-binding domains among them. We perform the same calculation for 
the other human proteins (considering PTM and DNA-binding Pfam domains that are colocalized with 
disorder) and bootstrap this process 100 times. The medians of the DNA-binding and PTM Pfam domain 
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fractions are 0.62 and 0.10, which are significantly enriched in RBPs compared to the medians of 0.17 
and 0.03, respectively, for the reference human proteome data (p-value < 0.05). This result is consistent 
with the analysis shown in Figure 2. Altogether, our analysis suggests that disorder is enriched in non-
RBD regions of RBPs where it facilitates DNA-binding and harbors PTM sites. 

3.6 Analysis of Highly-disordered RNA-binding Proteins 

We conduct detailed analysis of several illustrative examples of highly disordered human RBPs 
interacting with different forms of RNAs, such as mRNA, rRNA, and snRNA (Figure 3).  

mRNA-binding protein E1B-AP5. Heterogeneous nuclear ribonucleoprotein U-like protein 1 
(HNRNPUL1; UniProt ID: Q9BUJ2) is an 856-residue-long RBP acting as a transcriptional regulator [72] 
and playing a role in the mRNA processing and transport, as well as in the nucleocytoplasmic transport of 
adenovirus [73]. The transcriptional activity of E1B-AP5 is regulated by the formation of complex with 
the bromodomain-containing protein BRD7 [72]. E1B-AP5 is known to have several functional regions, 
such as SAP domain (residues 3-37, named after SAF-A/B, Acinus and PIAS, three proteins known to 
contain it) that can serve as a DNA-binding motif [74], B30.2/SPRY domain (residues 191-388) that 
functions through protein-protein interaction, and the RGG box (residues 612-658) that contains five 
RGG repeats and is involved in the RNA binding and is needed for transcription repression [75]. The 
disorder content of this protein is 0.48, with the putative IDRs located at both termini of its sequence. In 
line with the conclusions of this study, the functional disorder profile generated for this protein using the 
MobiDB [52, 54] and D2P2 [51] resources (Figure 3(a)) illustrates that the DNA-binding SAP domain is 
disordered. Furthermore, functionality of this protein is regulated by a multitude of different PTMs that 
are preferentially located within the putative IDRs. 

 

Figure 3. Functional profiles for illustrative representatives of human RBPs interacting with mRNA, rRNA, and ncRNA. Panel 
(a) shows the mRNA-binding protein E1B-AP5 (UniProt ID: Q9BUJ2). Panel (b) shows the rRNA-binding protein p49/STRAP 
(UniProt ID: Q8NEF9). Panel (c) shows the ncRNA-binding protein HEXIM2 (UniProt ID: Q96MH2). Horizontal bar in the 
middle shows disordered regions (in black) and structured regions (in white) predicted using the consensus of the ten disorder 
predictors from MobiDB. The colored and numbered bars above the disorder predictions show the positions of the (mostly 
structured) SCOP domains that are generated using the SUPERFAMILY predictor. The colored circles at the bottom show 
location of various PTMs assigned using PhosphoSitePlus, which is a comprehensive resource of the experimentally determined 
PTM sites. We collect the domain and PTM annotations from the D2P2 database. 

rRNA-binding protein p49/STRAP. Serum response factor-binding protein 1 (SRFBP1) is also known 
as SRF-dependent transcription regulation-associated protein or p49/STRAP (UniProt ID: Q8NEF9). This 
429-residue-long protein plays a role in the maturation of a precursor small subunit (SSU) rRNA 
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molecule into a mature SSU-rRNA molecule. SRFBP1 is a transcription cofactor of serum response factor 
(SRF) which regulates cytoskeletal and muscle-specific genes [76]. Levels of SRFBP1 increase with 
normal aging and are sensitive to glucose levels, being involved in redistribution of cytoskeletal F-actin 
during glucose deprivation, thereby playing a role in the glucose-deprivation associated cytoskeletal 
changes [77]. Recently, SRFBP1 was identified as a host factor for all seven genotypes of the hepatitis C 
virus (HCV) entry [78]. The currently available information about human SRFBP1 sequence is rather 
limited. This protein contains a conserved N-region that overlaps with the SRF-binding domain and C-
terminally located highly conserved BUD22 domain, which in the yeast cellular morphogenesis acts as a 
regulator of the budding selection, polarity, and RNA biogenesis [79, 80]. The MobiDB and D2P2-
generated functional disorder profile of the human SRFBP1 (Figure 3(b)) illustrates the high overall 
intrinsic disorder status of this protein, with the putative protein-level disorder content of 0.60, and 
presence numerous PTM sites. The fact that these sites are localized in IDRs suggest that disorder is 
involved in the PTM-driven regulation of its functionality. 

snRNA-binding protein HEXIM2. Hexamethylene bis-acetamide-inducible protein 2 (HEXIM2; 
UniProt ID: Q96MH2) is a 286-residue-long protein that binds to 7SK snRNA [81] and the positive 
transcription elongation factor via a short sequence motif (residues 140-143) [82]. This nuclear protein 
contains a coiled-coil domain (residues 207-277) that overlaps with the region responsible for the 
interaction with cyclin-T1 (CCNT1) and formation of the homooligomers (likely homodimers) or 
heterooligomers with HEXIM1 [82, 83]. Based on the data reported in IntAct database [84], HEXIM2 has 
69 protein binding partners and interacts with RNA and ssDNA. Figure 3(c) shows that the human 
HEXIM2 is a highly disordered protein (putative disorder content of 0.76), which is regulated by multiple 
PTMs located within its predicted disordered regions and is likely to utilize intrinsic disorder for the 
protein-protein and protein-nucleic acids interactions. 

4. Summary and Conclusions 

We analyze the peculiarities of intrinsic disorder distribution within the amino acid sequence of 1,112 
human RNA-binding proteins. We also investigate at the differences in the intrinsic disorder 
predispositions for the RBPs that interact with mRNA, irRNA, tRNA, rRNA, ncRNA, and snRNA. In 
agreement with previous studies, we find that on average, RBPs are significantly more disordered than 
general human proteins. However, disorder predisposition is not equally distributed among the RBPs 
interacting with different RNA classes. Our analysis shows that although RBPs interacting with mRNAs, 
rRNAs, and snRNAs are significantly enriched in putative intrinsic disorder, the ncRNA- and irRNA-
binding proteins are not enriched in disorder, whereas the tRNA-binding proteins are significantly 
depleted in putative disorder. Furthermore, we discover that the predicted disorder is heterogeneously 
distributed within the individual RBPs. The amount of putative intrinsic disorder in the non-RBD regions 
significantly exceed the disorder levels of RBDs, reflecting an interesting notion that high levels of 
disorder in RBPs are mostly used not for the interaction with RNA, but for the interactions with DNA and 
to host numerous and diverse types of the PTM sites. We also validate these observations that rely on the 
disorder predictions using a smaller collection of experimental disorder data from DisProt and based on 
an independent data from Pfam. This work provides an important snapshot of the peculiarities of 
functional disorder in RBPs and demonstrates that RBPs interacting with different functional RNAs are 
noticeably diversified in their functional utilization of intrinsic disorder. It also indicates that careful 
attention should be paid to small details even while looking at the big picture.   
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