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Abstract 

Identification and prediction of RNA-binding residues (RBRs) provides valuable 
insights into the mechanisms of protein-RNA interactions. We analyzed the 
contributions of a wide range of factors including amino acid sequence, evolutionary 
conservation, secondary structure and solvent accessibility, to the 

prediction/characterization of RBRs. Five feature sets were designed and feature 
selection was performed to find and investigate relevant features. We demonstrate that 
(1) interactions with positively charged amino acids Arg and Lys are preferred by the 
negatively charged nucleotides; (2) Gly provides flexibility for the RNA binding sites; 
(3) Glu with negatively charged side chain and several hydrophobic residues such as 

Leu, Val, Ala and Phe are disfavored in the RNA-binding sites; (4) coil residues, 
especially in long segments, are more flexible (than other secondary structures) and 
more likely to interact with RNA; (5) helical residues are more rigid and consequently 
they are less likely to bind RNA; and (6) residues partially exposed to the solvent are 
more likely to form RNA-binding sites. We introduce a novel sequence-based 

predictor of RBRs, RBRpred, which utilizes the selected features. RBRpred is 
comprehensively tested on three datasets with varied atom distance cutoffs by 
performing both five-fold cross validation and jackknife tests and achieves Matthew’s 
correlation coefficient (MCC) of 0.51, 0.48 and 0.42, respectively. The quality is 
comparable to or better than that for state-of-the-art predictors that apply the 

distance-based cutoff definition. We show that the most important factor for RBRs 
prediction is evolutionary conservation, followed by the amino acid sequence, 
predicted secondary structure and predicted solvent accessibility. We also investigate 



the impact of using native vs. predicted secondary structure and solvent accessibility. 
The predictions are sufficient for the RBR prediction and the knowledge of the actual 
solvent accessibility helps in predictions for lower distance cutoffs. 

Introduction 

The interactions between protein and nucleotides (DNA and RNA) control numerous 
cellular processes including DNA packaging, replication, transcription regulation, 
protein synthesis, formation of ribosomes, and catalytic activities. For example, 

transcription factors bind to DNA sequences and activate or inhibit the transcription of 
genes that have these sequences close to their promoters. The ribosome is assembled 
from various ribosomal RNA (rRNA) and protein molecules. The tRNA binds to 
specific proteins for the translation of the genetic code [1]. Some viruses have an 
RNA genome surrounded by capsid proteins and require the involvement of host 

proteins for replication [2]. Many works have investigated the mechanisms of 
protein-DNA interactions. They can be categorized into two groups. The first group 
focuses on the binding of DNA sequences in the genome and analyzes the influence of 
those sequences on the specificity of protein-DNA complexes [3, 4]. The other group 
concerns the protein sequences and it includes methods that screen proteins that 

potentially target specific DNA sequences [5, 6] and that locate the binding sites on 
those proteins [7, 8]. 
 
In contrast to the progress in the analysis of protein-DNA interactions, the interactions 
between proteins and RNA are less well understood. This is primarily because the 

RNA structures vary more than the DNA structures, resulting in a wider range of 
mechanisms that implement the protein-RNA interactions, and also due to better 
availability of the structural information concerning the DNA-protein information [9, 
10].  
 

The 3D structures of protein-RNA complexes provide valuable insights into the 
interaction between proteins and RNA. However, only 684 protein-RNA complexes 
[11] could be found in the Protein Data Bank (PDB) [12] as of June 2008. This is due 
to the costly and time consuming experimental determination of the structure of the 
complex. The above and the widening protein structure-sequence gap motivate the 

development of computational methods for prediction of RNA-binding residues 
(RBRs) from the amino acid (AA) sequence. Such methods not only provide the 
means to annotate protein sequences with unknown structure, but they also help with 
understanding the mechanisms of the protein-RNA interaction. 
 

Although the investigations into the physical and chemical properties of the 
protein-RNA interactions have a relatively long history [10, 13-16], the approaches 
that address prediction of RBRs have surfaced relatively recently. In 2004, Jeong et al. 
built the first RNA-binding predictor using neural network with a single sequence and 



predicted secondary structure as the input [17]. This method was improved by Jeong 
and Miyano by adding weighted profiles [18]. Terribilini et al. developed a Naïve 
Bayes based tool [19] that was used later to develop a web server for identifying 

binding residues for known protein-RNA complexes and for predicting RNA-binding 
residues from the sequence for which RNA-bound structure is not available in the 
PDB [20]. Wang and Brown designed a Support Vector Machine (SVM)-based web 
tool, BindN, for prediction of the DNA and RNA binding residues using three simple 
sequence-derived features including the side chain pKa value, hydrophobicity index 

and molecular mass of an AA [7]. Kim et al. introduced residue singlet/doublet 
interface propensities and used them together with position-specific multiple sequence 
profiles (PSSM) to propose a structure-based prediction method [21]. In 2008, two 
methods for the sequence-based prediction of the RNA-protein interacting residues 
based on the SVM classifier and PSSM were built [22, 23]. Another similar method, 

RNAProB, which combines a new “smoothed” PSSM with the SVM classifier was 
proposed in the same year [11]. Around the same time Chen and Lim designed a 
structure-based prediction method [9]. Most recently, Spriggs et al. introduced 
another sequence-based SVM-based predictor called PiRaNhA that uses PSSM and 
three amino acid properties as its input [24]. Table 1 summarizes the sequence-based 

RBRs prediction methods. We note that different methods use definitions of RBRs 
that can be divided into three categories. In atom distance-based definitions the 
residues are identified as interacting with RNA if the closest distance between atoms 
of that residue and the partner RNA is smaller than a cutoff value. In the second group, 
which includes the structure-based method by Kim et al. [21], residues are defined as 

RNA binding based on a comparison of the solvent accessible surface area of the 
protein structure with and without RNA. The third approach defines the interacting 
residues using hydrogen bonding, stacking, electrostatic, hydrophobic and van der 
Waals interactions, which are found with HBPLUS [25] or ENTANGLE [26]. We 
concentrate on the atom distance-based definition since most of the existing methods 

use this definition and since it is also commonly used to define protein-DNA [27] and 
protein-protein [28] interactions. We note that although Terribilini et al. first used the 
ENTANGLE to define RBRs [19], they later adopted the atom distance-based 
definition when building their online server [20]. 
 

Although several methods have been developed, the sequence-based prediction of 
RBRs is still a challenging and open problem. For instance, the most recent PiRaNhA 
method achieves the Matthews Correlation Coefficient (MCC) between 0.4 and 0.5, 
depending on the dataset used [24]. Prior works utilize different sequence derived 
information including amino acid sequence, evolutionary conservation, and predicted 

secondary structure and relative solvent accessibility. Besides the amino acid 
sequence used by all methods, the first predictor by Jeong et al. [17] considered the 
predicted secondary structure. The works by Jeong and Miyano [18], Kumar et al. 
[23], and Cheng et al. [11] used evolutionary conservation, while Wang et al. [22] 
used evolutionary conservation coupled with the predicted secondary structure. 

Terribilini’s work [19, 20] as well as the method by Wang and Brown [7] were based 



solely on the sequence. The most recent work by Sprigg et al. [24] applied the 
evolutionary conservation and the predicted solvent accessibility. We emphasize that 
each of the previous methods focused only on a subset of the above information and 

none of the studies investigated whether fusing all of these sources could be 
beneficial. 
 
Table 1. Existing methods for the sequence-based prediction of RNA-binding 

residues (RBRs). The methods are sorted by the publication date. The abbreviations 

used in the “classifier” and “inputs” columns include Neural Network (NN), Naïve 

Bayes (NB), Support Vector Machine (SVM), predicted secondary structure (PSS), 

evolutionary conservation (EC), and predicted relative solvent accessibility (PRSA). 

 

Reference Definition of RBRs Classifier Inputs 

Jeong et al. (2004) [17] Atom distance (6.0Å) NN Sequence, PSS 

Jeong & Miyano (2006) [18] Atom distance (6.0Å) NN Sequence, EC 

Terribilini et al. (2006) [19] ENTANGLE1 NB Sequence 

Wang & Brown (2006) [7] Atom distance (3.5Å) SVM Sequence 

Terribilini et al. (2007) [20] Atom distance (5.0Å) NB Sequence 

Wang et al. (2008) [22] ENTANGLE1 SVM Sequence, EC, PSS 

Kumar et al. (2008) [23] Atom distance (3.5Å & 6.0Å) SVM Sequence, EC 

Cheng et al. (2008) [11] Atom distance (3.5Å & 6.0Å) SVM Sequence, EC 

Sprigg et al. (2009) [24] HBPLUS2 SVM Sequence, EC, PRSA 
1
 RBRs are defined by ENTANGLE program [26], which searches for hydrogen bonding, stacking, electrostatic, 

hydrophobic and van der Waals interactions. 

2 
A residue is defined as RNA-binding if any of its non-hydrogen atoms are within vdW contact or hydrogen bonding 

distance, which are computed by HBPLUS program [25], to any RNA non-hydrogen atom directly or indirectly via a 

bridging water molecule. 

 
We propose a sequence-based model for the prediction of RBRs (RBRpred) that aims 
at providing high prediction quality and we also investigate factors associated with the 
prediction of RNA binding residues. We implemented five feature sets based on the 

sequence, evolutionary conservation, predicted secondary structure, predicted relative 
solvent accessibility, and combination of the predicted secondary structure and 
solvent accessibility. These features were processed by using feature selection and fed 
into SVM classifier to build RBRpred. The proposed predictor was compared against 
existing sequence-based methods that consider atom distance-based definition and 

showed comparable or better performance. Our analysis of the contribution of 
different features and feature sets, as well as the impact of native secondary structure 
and solvent accessibility, reveals new and confirms existing factors related to 
prediction/characterization of the RNA binding residues. 



Materials and Methods 

Datasets 

We prepared four datasets to design and test the proposed method. Three of them, 
including RB86, RB147 and RB106, were derived from previous studies and were 
used to perform comparative analysis. The remaining dataset, named by RB48, was 
constructed to perform an additional, independent test of the proposed method. Table 
2 summarizes the four datasets. 

 
Table 2. Summary of four benchmark datasets. 

 

Dataset Refs Number of RBRs  Number of non-RBRs Ratio = RBRs / non-RBRs 

RB86 [11, 18, 23] 4568 15503 1:4 

RB147 [20] 6157 26167 1:4 

RB106 [11, 7, 23] 2555 19496 1:7 

RB48 this paper 2262 3926 1:2 

 
The RB86 dataset consists of 86 RNA-interacting protein chains extracted from 
protein-RNA complexes. Sequence redundancy in this dataset was reduced such that 
no two chains have identity of above 70%. A cutoff of 6Å was used to define RBRs, 

i.e., a residue was defined as the RBR if the closest distance between atoms of the 
interacting RNA molecule and that residue was below 6Å. The number of RBRs and 
non-RBRs were 4568 and 15503, respectively. The RB86 dataset had been used in 
Jeong et al. [18], Kumar et al. [23] and Cheng et al. [11]. We selected the RB86 
dataset to perform feature selection and parameterization, and to build our predictor. 

This was motivated by Kumar [23] which also chose this dataset. The RB147 dataset 
was extracted using PISCES by Terribilini [20]. This dataset contains 147 protein 
chains with pairwise sequence identity below 30%, and a total of 32324 residues 
(6157 RBRs and 26167 non-RBRs). The RBRs were defined based on the cutoff 
distance of 5.0 Å. The RB106 dataset includes 106 protein chains with the pairwise 

sequence identity below 25%. The RBRs were identified based on the threshold of 3.5 
Å, which results in 2555 RBRs and 19496 non-RBRs. This set was used by Wang and 
Brown [7], Kumar et al. [23], and Cheng et al. [11]. 
 
We designed a new dataset, RB48, to perform an independent test of the proposed 

predictor. In contrast to the above three sets for which cross-validation tests were 
performed, we trained our model on the RB86 dataset and tested it on the RB48 set. 
First, we extracted all 565 protein-RNA complexes from PDB [12]. Second, we 
retained 41 complexes that were released after 2008. This was because some of the 
features were based on the secondary structure predicted with PSIPRED [29] and the 

relative solvent accessibility predicted with Real-SPINE [30], and these two 
predictors were published before 2008. This should remove a potential bias in 



predictions from PSIPRED and Real-SPINE, since the above protein chains would not 
be included in the training sets of these methods. Next, we run blastclust [31] on the 
protein chains from the 41 protein-RNA complexes to reduce the sequence identity 

within this set and between this set and our training dataset RB86. The protein in each 
complex may have multiple chains and we consider all of these chains that interact 
with RNA. We found total of 48 chains that had pairwise sequence identity lower than 
25% within the set and when compared with chains from the RB86 dataset. These 
chains constitute the RB48 dataset. We use the cutoff distance of 6 Å (the same as in 

the RB86 dataset) to identify RBRs, which results in 2262 RBRs and 3926 non-RBRs, 
respectively. 

Evaluation of prediction performance 

The performance of the proposed method is evaluated based on n fold cross validation 
(FCV) performed on the RB86, RB147 and RB106 datasets. The protein chains were 

randomly divided into n subsets, at each time using n-1 subsets to train the model then 
testing on the remaining subset. This process was repeated n times so that each fold 
was used once as the test set. The 5 FCV and jackknife test (n equals the number of 
sequences in dataset) were performed. Furthermore, an independent test was also 
performed by training the prediction model on the RB86 dataset and testing on the 

RB48 dataset. The above three evaluation tests are often used to examine 
effectiveness of predictors [32]. One of the desirable aspects of the jackknife test, in 
contrast to cross-validation tests with a lower number of folds, is that it always yields 
a unique result for a given benchmark dataset [33, 34], although at the same time it 
requires more computations. This test type has been increasingly used and widely 

recognized by investigators to examine the predictive quality (see, e.g. [35-47]), 
which motivates its application in this contribution. 
 
We adopted five quality indices to validate the proposed method: 
Sensitivity = TP/ (TP+FN) 

Specificity = TN/ (TN+FP) 
Precision = TP/ (TP+FP) 
Accuracy = (TP+TN)/ (TP+TN+FP+FN) 
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where TP, FP, TN and FN denote true positives (correctly predicted RBRs), false 
positives (non-RBRs that are incorrectly predicted as RBRs), true negatives (correctly 
predicted non-RBRs) and false negatives (RBRs that are incorrectly predicted as 
non-RBRs), respectively. MCC ranges between -1 and 1 where 1 represents a perfect 

prediction, 0 a random prediction, and -1 a case where all predictions are incorrect. 
The remaining quality indices range between 0 and 1, where higher value of the index 
corresponds to better prediction. We selected MCC as the main measure to perform 
design of the proposed method (including feature selection and classifier 
parameterization) as well as to compare with the existing methods. This is motivated 



by the fact that virtually all modern sequence-based RBR predictors are evaluated 
using MCC [7, 11, 19, 20, 22-24]. In addition to the above measures, we also use the 
receiver operating characteristic (ROC) curve [48] and area under the ROC curve 

(AUC) [49] to evaluate the performance of the proposed method. The output from the 
SVM classifier was thresholded to plot the ROC curve. 

Feature vector 

Twelve types of features were utilized to design the proposed method. These features 
were derived from four sources including the AA sequence (sequence-based features), 

the evolutionary conservation represented by PSI-BLAST profile (PSSM-based 
features), the predicted secondary structure (SS-based features), and the predicted 
relative solvent accessibility (RSA-based features). We also combined the latter two 
sources to derive SS&RSA-based features. 

Sequence-based features 

Weiss and Narayana have shown that Arginine-rich motifs are abundant in RNA 
binding sites [50]. Other strong biases for different types of AAs present at the 
RNA-protein interfaces have also been reported in prior studies [16, 17, 19, 23, 51, 
52]. The above motivates the inclusion of the sequence-based features as inputs for 
prediction of RBRs. We used binary encoding, i.e., 20-dimensional binary vector, to 

represent the AA type of a given residue (RT features). Considering the tendency of 
protein-RNA interface residues to be clustered along the primary protein sequences 
[19, 20], a sliding window of size 15, which includes 7 neighboring residues on both 
sides of the predicted residue, was used. The selection of window size was motivated 
by Kumar et al. [23] and Wang et al. [22] who used the same size. Zero vectors were 

used to fill in blanks for residues at the sequence termini. A total of 300 features, 
which corresponds to 15 20-dimentional vectors, were computed for each input 
residue. 

PSSM-based features 

Functional residues are usually more conserved when compared with non-functional 

residues, and evolutionary information is often used to locate the functional sites [53]. 
Previous studies demonstrate that evolutionary information provides an effective 
source of information for the prediction of RBRs [11, 18, 21, 23]. The evolutionary 
information quantified via PSSM has also been used to predict numerous other protein 
features, such as membrane protein types [54], enzyme functional classes [55], to 

functionally discriminate membrane proteins [56], and to predict protease types [57], 
protein fold types [58], protein quaternary structural attribute [59], as well as protein 
subcellular localizations [60], human protein subcellular localizations [61] and 
Gram-positive bacterial protein subcellular localizations [62]. Similarly as in the prior 
works, we used PSI-BLAST [31] to perform multiple alignment of the input sequence 

with the E-value equal 10-3 and three-iterations against the NCBI’s non-redundant 
protein sequence database (NR database). The PSI-BLAST’s output includes a 
20-dimensional PSSM (position-specific scoring matrix) and a 20-dimensional WOP 



(weighted observed percentage) vector for each residue of the input sequence. We 
note that the WOP vector was not used before in the prediction of the RBRs. Three 
types of PSSM-based features were extracted, namely PSSM, EntWOP and CNCC 

(close neighbor correlation coefficient). A window size of 15 was used, as motivated 
above. 
 
Similarly as in [63], PSSM and EntWOP features were obtained from the PSSM and 
WOP vectors and were computed using logistic function fij(aij)=1/(1+exp(-aij)) and 

entropy estimate EntWOPi = ∑ −
j ijij pp 20log , respectively, where ∑=

j ijijij nnp / , 

aij and nii correspond to the jth  values of the PSSM and WOP vector for the ith 
residue in the sequence. 
 

There are 15×20 = 300 PSSM and 15 EntWOP features for each predicted residue. In 
Kim’s work [21], structure-derived information concerning adjacent residues was 
used to predict RBRs, which resulted in an improved prediction quality. However, 
since the proposed method is based solely on the sequence, we designed CNCC 
features to approximate the features used by Kim et al. Given that the PSSM vector 

for ith residue is denoted as (ai1, ai2,…, ai20), the CNCC features form a 14-dimensional 
vector (Ci i-7, Ci i-6,…, Ci i-1, Ci i+1, Ci i+2, Ci i+7), where 
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C , and ia and ja are the average values. 

The Cij values correspond to the Pearson correlation coefficients between the PSSM 
vector of the predicted residue and that of the adjacent residues in the sliding window. 
These features were originally proposed by Cheng and Baldi for the prediction of 
protein contact maps [64]. 

SS-based features 

Knowledge of the secondary structure has been shown to be helpful in understanding 
of protein folding [65, 66], and in prediction of protein structure [67, 68], function 
[69], protein-protein interactions [70], and the RNA-binding interactions [17]. In one 
of the earlier studies, Draper found two canonical protein-RNA contact types at the 

secondary structure level, (1) binding between α-helix or loop and a groove of the 
RNA pockets; and (2) binding between β-sheet surface and unpaired RNA bases [14]. 
Several previous studies also used predicted secondary structure in prediction of 
RBRs [17][22]. We estimate the RNA binding propensity of the three secondary 
structures by 

)
sec

sec
(log2

ssisondarywhoseresiduesallofpercentage

ssisstructureondarywhoseRBRsofpercentage
propensityss =  

where ss = {H (helix), E (strand), C (coil)}. The propensity quantifies the degree to 
which a certain type of the secondary structure is preferred in the RNA binding sites. 

The values greater than zero show that the occurrence of a given secondary structure 



in the RNA binding sites is higher than that in whole sequence, otherwise the 
occurrence in the RNA binding sites is either lower or the same, if equal to zero. We 
computed the propensities on the RB86, RB147 and RB106 datasets, see Figure 1, 

where DSSP program [71] was used to assign native (actual) secondary structures. We 
observe that residues in coil conformation are more likely to bind RNA, while helix 
and strand residues are less likely to form RNA binding sites. The propensities vary 
with the datasets, which is likely influenced by the different cutoff thresholds. More 
specifically, the propensity of the strand residues decreases as the cutoff values 

decrease, i.e., fewer residues which are closer to RNA are considered as RBRs. 
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Figure 1. RNA-binding propensity of the three secondary structures on the RB86, 

RB147, and RB106 datasets, where the RBRs were defined based on the 6Å, 5Å, and 

3.5Å thresholds, respectively. The propensity is defined as the percentage of 

RNA-binding residues with certain secondary structure type among all binding 

residues divided by the percentage of all residues with the same secondary structure 

type among all residues. 

 
Our analysis demonstrates that the secondary structure should be useful in the context 
of the RBRs prediction. We use the secondary structure predictions provided by 
PSIPRED [29], since this method (1) is well-known, widely used, and has been shown 

to provide superior accuracy when compared with other modern secondary structure 
prediction methods [72]; (2) was frequently used in other related prediction methods 
that concern solvent accessibility [73], protein folds [74], residue depth [75], 
beta-turns [76], and alpha-turns [77], to name a few; and (3) was used in 
sequence-based prediction of RBRs [22]. The PSIPRED’s output includes the 

secondary structure state for each residue together with the corresponding probability. 
The 3-state accuracy (Q3) of PSIPRED predictions on the RB86, RB147 and RB106 
datasets equal 79.9%, 78.2% and 79.2%, respectively. This suggests that PSIPRED 
did not overfit these datasets since its originally reported accuracy is about 78% [78]. 
 

The existing sequence-based predictors of RBRs use only the three-state prediction of 



the secondary structure of the predicted residue [17, 22]. In contrast, we designed five 
types of features based on the outputs from the PSIPRED, including SSProb, SSCont, 
TriSS, SegLen and SegDB. These features are based on the sliding window of size 15 

and they reflect local secondary structure information. SSProb features are composed 
of 15×3 = 45 features that correspond to probabilities of 15 neighboring residues, 
where the secondary structure of each residue is represented by a 3-dimensional 
probability vector, i.e., probability of coil, strand and helix prediction. SSCont features 
encode the three secondary structure contents in the sliding window, i.e., the fraction 

of residues in a given secondary structure among the residues in the window. We also 
use a secondary structure triplet to record the secondary structure of target residue and 
one adjacent residue on both sides. This triplet has 33=27 combinations, thus it was 
encoded by a 27-dimensional binary vector (TriSS features). The remaining two types 
of features, SegLen and SegDB, concern a secondary structure segment that includes 

the predicted residue. The segment was defined as a consecutive sequence of residues 
that were predicted in the same secondary structure state. SegLen features are encoded 
with a 3-dimensional vector which corresponds to the three secondary structure states. 
If the segment was not composed by a given secondary structure type, then the 
corresponding dimension is set to 0, otherwise it records the length of the segment 

which is normalized by the window size of 15. SegDB features depict the relative 
position of predicted residue in the segment, i.e., the distance between the target 
residue and the termini of the segment. Similarly as SegLen, we used two 
3-dimensional vectors (6 features) to denote the minimum/maximum distance, 
respectively. The distance was normalized by half size of the sliding window, which 

equals 7. 

RSA-based features 

Solvent accessible surface area (ASA) delineates the surface area of a residue that is 
accessible to a solvent, and has been widely studied due to the fact that surface 
residues are directly involved in the interaction with other biological molecules 

[79-81]. The ASA was widely used in the context of protein structure [67, 68], 
function [69], stability [82], folding [83, 84], flexibility [85] and fold recognition [86, 
87]. Ahmad et al. [88] demonstrated the importance of the role of the solvent 
accessibility of AAs in determining the protein-DNA binding. We investigate whether 
ASA helps in prediction of the protein-RNA interaction. Given the bias in the ASA 

values of different AA types, i.e., AAs with larger size potentially have larger ASA, 
relative solvent accessibility (RSA), which is defined by the ASA of a residue in the 
protein divided by ASA observed in an extended conformation (Ala-X-Ala) [88], was 
used. 
 

Similarly as in the case of the secondary structures, we analyze the propensity of 
residues with different RSA values to form RNA-binding sites. DSSP [71] was used 
to compute the native ASA values, which were normalized by the area of the extended 
conformation to find the RSA values. The RNA binding propensity for residues with 
RSA values binned into 11 intervals is defined as follow: 



)(log2
rrangeinisRSAwhoseresiduesallofpercentage

rrangeinisRSAwhoseRBRsofpercentage
propensityr =  

where r∈{[0, 0], (0, 0.1], (0.1, 0.2], …, (0.9, 1.0]}, i.e. residues were divided into ten 
equal-sized bins of non-zero RSA values and one bin that includes residues with RSA 
values of zero. Figure 2 shows the RNA binding propensity on the RB86, RB147 and 
RB106 datasets. As expected, the residues with large RSA (exposed residues) appear 
more frequently in the RNA binding regions, while those with small RSA (buried 

residues) have lower chance to bind RNA. The magnitude of the propensity is larger 
for datasets with a smaller cutoff. This means that RSA would provide better 
discrimination between the RNA binding and other residues for smaller distance 
cutoffs. 
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Figure 2. RNA-binding propensity for residues with different RSA values on the RB86, 

RB147, and RB106 datasets, where the RBRs were defined based on the 6Å, 5Å, and 

3.5Å cutoffs, respectively. RNA-binding propensity is defined as the percentage of 

RNA-binding residues with RSA in a given range among all binding residues divided 

by the percentage of all residues with RSA in the same range among all residues. 

 
Several methods for the prediction of RSA are available [30, 73, 88-92]. We 
performed predictions using one of the most recent methods, Real-SPINE [30]. This is 
motivated by the high quality of its predictions, i.e., a correlation of 0.74 was reported 
[30]. The predictions with Real-SPINE on the RB86, RB147 and RB106 datasets 

yield correlations of 0.71, 0.69 and 0.70, respectively. Since these results are 



consistent with the originally reported values, we assume that this method did not 
overfit the three datasets. Only one existing sequence-based predictor of RBRs uses 
the predicted solvent accessibility [24]. Two types of features, RSA and AveRSA, were 

designed based on the predicted RSA. Similarly to [24] where a window is use, a 
15-dimensional vector of RSA features records the RSA values of the residues in a 
sliding window of size 15, i.e., each dimension corresponded to one position in the 
window. We also introduced 7 AveRSA features by computing the average of the RSA 
values in the sliding window by varying window sizes between 3 and 15. The latter 

features reflect the solvent exposure in a local environment. 
 
Table 3. Summary of the features, divided into five sets and twelve types, before and 

after feature selection. The last column identifies feature types that were not used 

before in the sequence-based prediction of the RBRs. 

 

Feature set Feature 

type 

# features before 

feature selection 

# selected 

features 

Features never used before in the 

sequence-based RBRs prediction 

Sequence-based RT 300 33  

PSSM 300 260  

EntWOP 15 15 √ PSSM-based 

CNCC 14 13 √ 

SSProb 45 45 √ 

SSCont 3 2 √ 

TriSS 27 2 √ 

SegLen 3 2 √ 

SS-based 

SegDB 6 4 √ 

RSA 15 15  
RSA-based 

AveRSA 7 7 √ 

SS&RSA-based SR 54 22 √ 

Total number 789 420  

SS&RSA-based features 

These features combine the information concerning predicted secondary structure and 

the predicted RSA for the predicted residues. We binarized the RSA values to 
categorize the residue as either exposed (RSA higher than a cutoff value) or buried 
(RSA lower than a cutoff value). We used 9 cutoff values, 0.1, 0.2, 0.3, …, 0.9. As a 
result, we defined a 54-dimensional (9×2×3=54) binary vector, called SR, in which we 
encode the possible combinations of 3 secondary structures and 2 exposure states with 

9 cutoffs. The vector includes all zeros except 9 positions that correspond to the 
predicted secondary structure and exposure states for the nine thresholds.   
 
Overall, we produced 789 features, see Table 3. Those features were divided into five 
feature sets: sequence-based feature set (RT), PSSM-based feature set (PSSM, 

EntWOP, and CNCC), SS-based feature set (SSProb, SSCont, TriSS, SegLen, and 
SegDB), RSA-based feature set (RSA and AveRSA) and SS&RSA-based feature set 



(SR).  

Prediction method 

Support vector machine (SVM) 

The motivation behind the choice of the SVM comes from wide-spread applications 
of SVM in various bioinformatics problems, such as prediction of secondary structure 
[93, 94], catalytic residues [63], subcellular localization [95, 96], protein-protein 
interaction site [97], and the successful application in the existing method for RBR 
predictions [7, 11, 22-24]. We note that four most recent sequence-based predictors of 

the RNA-binding residues are based on the SVM classifier, see Table 1. SVM is a 
linear large-margin classifier which can be extended to non-linear classification with 
the use of a kernel function [98]. We used SVMlight [99] to develop and test the 
proposed method. The SVMlight is a well-known SVM package that has been used in 
previous RBR predictions [7, 22, 23]. Radial basis function (RBF) is chosen as the 

kernel function due to its competitive performance for solving nonlinear problems 
when compared with other kernel functions [63, 75] and since this kernel was also 
selected in the most recent sequence-based RBRs predictors [11, 22, 24]. 
 

 

Figure 3. First-stage parameterization. The MCC values (y-axis) of RBR predictors 

built by choosing soft-margin constant C (x-axis) and RBF kernel width γ (each curve 

corresponds to a different γ value). 

 
The considered SVM classifier has two parameters, soft-margin constant C and RBF 

kernel width γ. A two-stage parameterization was performed. First, we used the entire 
set of 789 features to perform a grid search over C and γ values based on 5 FCV on 

the RB86 dataset. After several trials, the C and γ values were constrained to the 
Cartesian product of {0.1, 0.2, 0.3, …, 2.5}×{0.01, 0.02, 0.03, …, 0.10}. Figure 3 
shows the MCC values of the predictors using different pairs of parameters. Choosing 



a smaller γ yields better MCC, irrespectively of the value of C. The best MCC = 0.501 
was obtained for C = 1.0 and γ = 0.02. The same MCC value was also observed for γ 
= 0.02 and C = 1.1/1.2/1.6/1.8. Here we chose the smallest C to save computational 

time. These parameters were used to perform feature selection (see the “Feature 
selection” section), after which the parameterization was repeated using the selected 
subset of features. We again performed 5 FCV on the RB86 dataset considering the 

grid search over the Cartesian product of C = {0.8, 0.9, 1.0, 1.1, 1.2} and γ = {0.005, 
0.010, 0.015, …, 0.040}. We narrowed the range of the parameter values and used a 

finer grid step that was centered on the optimal parameters obtained in the first round 

of the parameterization, see Figure 4. The selection of γ in range 0.025 to 0.040 
results in larger MCC values. The best MCC = 0.513 was obtained for C = 1.1 and γ = 
0.025, and these parameters were used through all empirical tests. 

 
Figure 4. Second-stage parameterization. The MCC values (y-axis) of RBR 

predictors built by choosing soft-margin constant C (x-axis) and RBF kernel width γ 

(each curve corresponds to a different γ value). 

 

Feature selection 

First, the 789 features were ranked based on the χ2-statistic [100] between their values 
and the class labels (annotation of RBRs). The motivation to use the χ2-statistic comes 
from the observation that such ranking results in selection of features that provide 
improved precision in the subsequent classification [101]. We note that precision, 

which is defined as the success rate among all predicted RBRs, is one of the key 
indicators of the quality of the prediction of RBRs. We also note that the same feature 
selection was successfully used in designing a relevant, recent, to date top-performing, 
sequence-based method for the prediction of catalytic residues [63]. The χ2-scores 
were computed using 5 FCV on the RB86 dataset, i.e., average over the 5 training 

folds was computed to avoid overfitting. Features were ranked according to the 



descending values of the average χ2-score. We started with the top 10 ranked feature 
and we added 10 features at a time according to their rank. We used these features to 

generate the SVM predictor (with C = 1.0 and RBF kernel with γ = 0.02) based on 5 
FCV on the RB86 dataset. Figure 5 shows the MCC values of these SVMs for 
different numbers of the input features n. The MCC values initially increase as n 
grows larger, and at n = 420 the MCC values saturate and we observe only small 
fluctuations. As a result, we selected the top 420 features to build the proposed 
prediction model. The breakdown of the selected features is shown in Table 3. We 

note that a substantial computational cost of building SVM classifiers (given the large 
size of the problem that includes 5 folds with 16,000 samples and n attributes in each 
fold to run for each of the 79 feature set evaluations) forced us to use the above 
relatively simple feature selection procedure. 
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Figure 5. The MCC values (y-axis) of the SVM-based RBRs predictors built using n 

(x-axis) top ranked features. The features were ranked according to their χ2 -score. 

 

Overview of the prediction system 

Figure 6 shows the architecture of the proposed system. Twelve sets of features are 
extracted based on sequence, PSI-BLAST profiles from the PSI-BLAST [31], 

predicted secondary structure from the PSIPRED [29] and predicted relative solvent 
accessibility from the Real-SPINE [30]. A total of 420 features, which were selected 
among 789 considered features, are fed into the SVM classifier to predict RBRs. 
 
 



 

 

 

Figure 6. Block diagram of the proposed prediction system. The numbers of selected 

features are shown in parentheses. 

Results and Discussion 

Comparison with existing sequence-based RBR prediction methods 

The existing sequence-based predictors use different definitions of RBRs. As 
discussed above, the proposed method, RBRpred, applies the atom distance-based 
definition and is compared against all other modern predictors that use this definition. 
The competing methods include the neural network based method (ANN) and its 

improved version (ANN_WP) by Jeong et al. [17, 18], three SVM based methods 
including BindN by Wang and Brown [7], Pprint by Kumar et al. [23], and RNAProB 
by Cheng et al. [11], and the Naïve Bayes based method, RNABindR, by Terribilini et 
al. [20]. The six existing methods were evaluated using different test procedures. 
ANN and ANN_WP were tested with the 10 FCV; BindN, Pprint and RNAProB were 

evaluated based on the 5 FCV; and authors of RNABindR applied the jackknife test. 
We performed both 5 FCV and jackknife tests on the RB86, RB147 and RB106 
datasets, see Table 4. We did not run the 10 FCV for two reasons. First, the 10 FCV 
was only used to evaluate the ANN and ANN_WP methods and Kumar et al. 
demonstrated that the Pprint method did better than the two neural network-based 

methods [23]. Thus, comparison with Pprint under the 5 FCV setting should also be 
indicative of the comparison with the ANN and ANN_WP methods. Second, since the 
results of 5 FCV and jackknife tests are quite similar on all three datasets, i.e., the 
MCC values vary by between 0 and 0.02 and the accuracies differ by between 0.09 
and 0.53 when comparing the 5 FCV and jackknife tests for the RBRpred, we 

anticipate that the 10 FCV would likely yield similar results. 
 
 
 

SPINE 
AveRSA (7) 

RT (33) 

Protein 

Sequence 

RNA binding 

residue 

prediction 
PSIPRED 

PSI-BLAST 

SVM 

PSSM (260) 

EntWOP (15) 

CNCC (13) 

SSProb (45) 

SSCont (2) 

TriSS (2) 

SegLen (2) 

SegDB (4) 

SR (22) 

RSA (15) 



Table 4. Comparison between the proposed RBRpred and the six competing 

sequence-based RBR prediction methods on three datasets. 

 

Dataset Method Ref. Test type Sensitivity Specificity Precision Accuracy MCC 

ANN [17] 10 FCV 43.40 91.04 58.80 80.20 0.39 

ANN_WP [18] 10 FCV NR3 NR3 NR3 NR3 0.41 

Pprint [23] 5 FCV 53.05 89.55 59.93 81.16 0.45 

RNAProB1 [11] 5 FCV 79.95 90.36 70.96 87.99 0.68 

RNAProB_std2 [11] 5 FCV NR3 NR3 NR3 83.39 0.50 

RBRpred this paper 5 FCV 60.88 89.67 63.46 83.12 0.51 

RB86 

RBRpred this paper Jackknife 61.14 89.27 62.68 82.87 0.51 

RNABindR [20] Jackknife 33.00 95.00 61.00 83.19 0.36 

RBRpred this paper 5 FCV 52.90 91.02 58.09 83.76 0.46 RB147 

RBRpred this paper Jackknife 54.88 91.21 59.50 84.29 0.48 

BindN [7] 5 FCV 66.28 69.84 27.76 69.32 0.27 

Pprint [23] 5 FCV 70.09 75.54 27.30 75.43 0.32 

RNAProB1 [11] 5 FCV 77.14 80.87 54.30 80.44 0.42 

RNAProB_std2 [11] 5 FCV NR3 NR3 NR3 77.80 0.36 

RBRpred this paper 5 FCV 39.92 95.68 54.78 89.22 0.41 

RB106 

RBRpred this paper Jackknife 41.41 95.58 55.13 89.31 0.42 
1SVM-based method using smoothed PSSM  

2SVM-based method using standard PSSM 

3The result was not reported and cannot be duplicated 

 
RBRpred provides a relatively high MCC, i.e., 0.51, 0.48 and 0.42 on the RB86, 
RB147 and RB106 datasets, respectively. When compared with ANN and ANN_WP, 
the MCC is higher by 0.12 and 0.10. Similar improvements of 0.15 and 0.12 are 

observed when comparing against BindN and RNABindR, respectively. A bit smaller, 
although still relatively substantial improvements of 0.06 and 0.10 are obtained 
against Pprint on the RB86 and RB106 datasets, respectively. Although the RNAProB 
outperforms RBRpred on the RB86 dataset, the two methods provide similar quality 
on the RB106 dataset. This advantage of RNAProB on the RB86 dataset is likely due 

to the use of the smoothed PSSM encoding scheme since a comparable result, i.e., 
0.50 for RNAProB_std and 0.51 for RBRpred, is obtained when using the standard 
PSSM encoding. At the same time, for the RB106 dataset the RNAProB_std is 
outperformed by RBRpred by a margin of 0.05. We observe that the RNAProB 
method was extensively parameterized by the authors. They considered not only the 

values of C and γ, but also tuned values of smoothing window size and two weight 
parameters. Additionally, the authors re-tuned their prediction model for each dataset, 
effectively creating dataset-tuned models, while we propose a single model that was 
tuned on the RB86 dataset and applied (without re-tuning) on the other datasets.  
 

 

 



Table 5. Comparison between the proposed RBRpred and the six competing 

sequence-based RBR prediction methods on three datasets. Each competing method 

is compared with RBRpred at equal sensitivity and at equal precision. The RBRpred 

results are based on the 5 FCV and the matching sensitivity and precision values are 

underlined. 

 

Dataset Method Sensitivity Specificity Precision Accuracy MCC 

ANN 43.40 91.04 58.80 80.20 0.39 

RBRpred1 43.41 95.65 74.60 83.76 0.48 

RBRpred2 66.44 86.28 58.80 81.76 0.51 

Pprint 53.05 89.55 59.93 81.16 0.45 

RBRpred1 53.06 92.76 68.36 83.73 0.50 

RBRpred2 64.60 87.28 59.94 82.12 0.51 

RNAProB 79.95 90.36 70.96 87.99 0.68 

RBRpred1 79.95 71.62 45.36 73.51 0.44 

RB86 

RBRpred2 49.65 94.01 70.96 83.92 0.50 

RNABindR 33.00 95.00 61.00 83.19 0.36 

RBRpred1 33.00 97.48 75.51 85.20 0.43 RB147 

RBRpred2 49.49 92.56 61.00 84.35 0.46 

BindN 66.28 69.84 27.76 69.32 0.27 

RBRpred1 66.30 84.12 35.37 82.06 0.39 

RBRpred2 77.57 73.55 27.76 74.01 0.35 

Pprint 70.09 75.54 27.30 75.43 0.32 

RBRpred1 70.10 80.77 32.33 79.53 0.38 

RBRpred2 78.20 72.71 27.30 73.34 0.35 

RNAProB 77.14 80.87 34.57 80.44 0.42 

RBRpred1 77.14 74.05 28.04 74.41 0.35 

RB106 

RBRpred2 67.12 83.36 34.58 81.47 0.39 
1results at equal sensitivity 

2results at equal precision 

 
The RBRpred is characterized by consistently, across all 3 datasets, high accuracy 
(>82%). At the same time, sensitivity, specificity and precision record fluctuations and 
cannot be reliably compared using Table 4. To facilitate comparison, we concentrate 
on two indices that quantify predictions of RBRs (as opposed to the non-RBRs), 

sensitivity and precision. We report the four remaining indices obtained by RBRpred 
at sensitivity equal to that of a given competing method, and similarly we report the 
prediction quality at equal precisions, see Table 5. These values for RBRpred are 
computed by thresholding the outputs of the SVM classifier. The conclusions are 
similar to those for Table 4. The proposed method outperforms, in terms of providing 

higher MCC, the ANN, BindN, RNABindR and Pprint methods. When compared 
with the ANN and RNABindR, RBRpred obtains comparable specificity and accuracy 
and higher precision (by 15.8% and 14.5%, respectively) at equal sensitivity, and 



higher sensitivity (by 23.0% and 16.5%, respectively) at the equal precision. 
RBRpred’s precision at the equal sensitivity when contrasted against the Pprint on the 
RB86 and the RB106 datasets is 8.4% and 5.0% higher, respectively, and similarly 

sensitivity at the equal precision is 11.6% and 8.1% higher, respectively. The BindN 
method is shown to provide 14.3%, 7.6% and 12.7% lower specificity, precision and 
accuracy at the equal sensitivity, respectively, and 11.3%, 3.7% and 4.7% lower 
sensitivity, specificity and accuracy at the equal precision, respectively, when 
compared with the RBRpred. Finally, the RNAProB is confirmed to improve over 

RBRpred on the RB86 dataset. More specifically, at the equal sensitivity, the 
RNAProB improves specificity by 18.7%, precision by 25.6% and accuracy by 14.4%, 
and at the equal precision, it offers sensitivity that is higher by 30.3% and comparable 
accuracy and specificity. At the same time, results on the RB106 dataset reveal that 
the RNAProB obtains a slightly higher (by about 6%) specificity, precision and 

accuracy at the equal sensitivity, and a better sensitivity (by 10.0%), similar accuracy 
and a slightly lower specificity (by about 2.5%) at the equal precision. 
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Figure 7. The ROC curves where TP rate is on the y-axis and FP rate on the x-axis 

for the RBRpred, BindN and Pprint methods on two datasets, (A) for the RB86 dataset; 

and (B) for the RB48 dataset. 

 
The ROC curve for the proposed predictor and two existing methods, BindN and 
Pprint, for the RB86 dataset is given in Figure 7A. The BindN and Pprint predictions 
were obtained from the BindN webserver [7] and Table II in [23], respectively. We 

could not retrieve predictions for individual proteins which are necessary to draw the 
curve for the ANN, ANN_WP, RNABindR and RNAProB methods. The curve 
demonstrates that RBRpred improves over the other two predictors for the entire 
range of the true positive and the false positive rates.  
 

We observe differences in MCC achieved by the RBRpred for the three datasets. The 



highest MCC was obtained on the RB86 dataset, second highest on the RB147, and 
the lowest on the RB106 dataset. This could be due to the intrinsic difficulty in 
predicting RBRs defined by a smaller distance cutoff, i.e., the three datasets use 

progressively smaller cutoffs, and since as a result the datasets are more imbalanced, 
see Table 2. 

Test on the RB48 dataset 

In this test the prediction model, which is generated on the RB86 dataset using the 

selected 420 features and parameterized SVM (with C = 1.1 and γ = 0.025), is tested 
on the RB48 dataset. The test dataset is characterized by low pairwise sequence 
identity (<25%) with respect to the RB86 dataset. The corresponding ROC curves are 
shown in Figure 7B. The results demonstrate that RBRpred outperforms BindN and 
Pprint, and that these improvements are consistent with the cross validation results on 
the RB86 dataset, see Figure 7A.  

Analysis of selected features 

We considered total of 789 features, among which 420 were selected to build the 
proposed method. Table 3 shows the number of features before/after the feature 
selection for each feature set and type. About two thirds of the selected features are 
PSSM-based, indicating the importance of the evolutionary conservation in predicting 

RBRs. In order to evaluate the contributions of features derived from different sources, 
the selected features were grouped into the five sets which were used separately to 
build the prediction model. This was performed using 5 FCV tests with the 

parameterized SVM (with C = 1.1 and γ = 0.025) on the RB86, RB147 and RB106 
datasets. We show ROC curves for each of the five feature sets, together with the 

curve for entire set of 420 features, for the three datasets in Figure 8. Since some 
curves intersect with each other, we also give the AUC values in Table 6. 
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Figure 8. The ROC curves where TP rate is on the y-axis and FP rate on the x-axis 

for the SVM-based predictors that use the 33 selected sequence-based features 

(Seq), 288 selected PSSM-based features (PSSM), 55 selected SS-based features 

(SS), 22 selected RSA-based features (RSA), and 22 selected SS&RSA-based 

features (SS&RSA). The tests were performed using 5 FCV on the (A) RB86 dataset, 

(B) RB147 dataset and (C) RB106 dataset.  

 

Table 6. The AUC values for the SVM-based predictors that use the 33 selected 

sequence-based features (Seq), 288 selected PSSM-based features (PSSM), 55 

selected SS-based features (SS), 22 selected RSA-based features (RSA), and 22 

selected SS&RSA-based features (SS&RSA), which were measured based on the 5 

FCV on the RB86, RB147, and RB106 datasets. The feature sets are sorted by the 

AUC value on the RB86 dataset. 

 

Feature sets RB86 RB147 RB106 

All features 0.842 0.818 0.833 

PSSM-based 0.832 0.807 0.831 

Sequence-based 0.683 0.684 0.717 

SS-based 0.635 0.624 0.591 

RSA-based 0.590 0.577 0.623 

SS&RSA-based 0.586 0.589 0.555 

 
The PSSM-based features contribute the most among the five feature sets. This is 

C 



expected as residues from the RNA binding sites are usually conserved. The selected 
sequence-based features rank second, and the remaining three feature sets provide 
lower and comparable amount of information for the prediction of RBRs. The 

selected SS-based features (derived from the predicted secondary structure) are more 
beneficial on the RB86 and RB147 datasets, while the selected RSA-based features 
are better than the other two feature sets on the RB106 dataset. The improved value of 
the RSA-based features for the RB106 dataset could be explained by the smaller 
cutoff used to define RBR, i.e., the RBR residues are on average more exposed to the 

solvent in this dataset when compared with the other two datasets. As noted above, 
comparisons with existing methods show variations of MCC on the different datasets, 
which is likely due to the different distance cutoffs that were used. This is also 
observed in Figure 8 and Table 6. The cutoff used in the RB147 dataset is closer to 
that used in the RB86 dataset, and these two datasets share relatively similar ROC 

curves (Figures 8-A and 8-B) and AUC values for the corresponding feature sets. On 
the contrary, the ROC curves (Figure 8C) and AUC values for the RB106 dataset, 
which uses a more stringent (lower) cutoff, are different. For instance, usage of the 
PSSM-based features results in predictions that are of similar quality when compared 
with the prediction using the entire set of 420 features. This suggests that the 

proposed prediction model that is designed (including feature selection and 
parameterization) on the RB86 dataset for which a distance cutoff of 6Å is used, may 
not work as well on the other two datasets which apply different cutoffs (5Å for the 
RB147 and 3.5Å for the RB106). Although RBRpred shows better results on the 
RB147 and RB106 datasets when compared to several existing methods, there may 

still be space to improve the predictions on these two datasets. 
 

Table 7. Comparison between the proposed RBRpred and the predictions based on 

the features extracted from the native secondary structure (SS) and/or native relative 

solvent accessibility (RSA). 

 

Dataset SS RSA Sensitivity Specificity Precision Accuracy MCC 

Predicted Predicted 60.88 89.67 63.46 83.12 0.51 

Native Native 58.82 91.09 66.05 83.75 0.52 

Native Predicted 58.30 90.50 64.39 83.17 0.51 

RB86 

Predicted Native 61.43 90.00 64.40 83.49 0.52 

Predicted Predicted 52.90 91.02 58.09 83.76 0.46 

Native Native 52.53 92.75 63.04 85.09 0.49 

Native Predicted 50.30 91.95 59.51 84.01 0.45 

RB147 

Predicted Native 54.86 91.72 60.93 84.70 0.49 

Predicted Predicted 39.92 95.68 54.78 89.22 0.41 

Native Native 42.23 96.47 61.03 90.18 0.46 

Native Predicted 37.22 96.45 57.85 89.58 0.41 

RB106 

Predicted Native 45.13 96.01 59.71 90.11 0.47 

 



Prediction using native secondary structure and relative solvent 

accessibility 

The proposed method integrates information concerning the secondary structure 

predicted with PSIPRED [29] and relative solvent accessibility predicted with 
Real-SPINE [30]. Although both PSIPRED and Real-SPINE provide high quality 
predictions, the predicted values differ from the native values. We investigate whether 
the usage of the native secondary structure and/or solvent accessibility would further 
increase the quality of the prediction of RBRs. We performed 5 FCV tests on the 

RB86, RB147 and RB106 datasets using the four combinations of native/predicted 
values of the secondary structure (SS) and the relative solvent accessibility (RSA). 
The features are computed using native SS and native RSA, native SS and predicted 
RSA, and predicted SS and native RSA. Predictions using the above features are 
compared with original predictions (using predicted SS and predicted RSA), see Table 

7. The native SS and RSA were extracted with the DSSP program [71] and the 
remaining features (sequence- and PSSM-based) were used in all four cases. The 
inclusion of the native SS and RSA does not lead to improvements in prediction 
quality for the RB86 dataset. At the same time, it helps with the predictions on the 
RB147 and RB106 datasets. We observe improvement of MCC by 0.03 and 0.05, 

respectively, and precision by 5% and 6%, respectively. The improvement is due to 
the use of the native RSA, since the usage of the predicted secondary structure does 
not seem to lower the prediction quality. This is likely since these two datasets apply 
lower cutoffs to define RBRs, and thus the knowledge of the actual RSA would be 
more helpful when compared with the RB86 dataset. Overall, in our view the results 

demonstrate that the predicted SS and RSA are sufficient for high quality predictions 
of the RBRs. 

Relationship between residue types and RBRs 

We use a sliding window to encode AA types of the target residue and its neighbors. 
Among the 300 RT features, 33 are selected and they include eight AA types, namely 

Arg (R), Lys (K), Leu (L), Gly (G), Val (V), Ala (A), Glu (E) and Phe (F). The 
positively charged AAs Arg and Lys show higher propensity to form RNA-binding 
sites, likely due to their ability to participate in interactions with the negatively 
charged phosphate backbone of RNA [9, 19]. Gly is small and provides flexibility for 
the protein-RNA interactions [19, 23]. The Glu, Leu, Val, Ala and Phe are disfavored 

in the RNA-binding sites. This is likely since Glu has a negatively charged side chain 
while the other four residue types are hydrophobic [19, 23]. Table 8 lists the selected 
RT features along the sliding window. The selected residues are symmetrical against 
the central position that denotes the predicted residue. Arg is selected at virtually all 
window positions, which is likely due to the abundance of Arginine-rich motifs in the 

RNA binding sites [50]. 
 
Table 8. The selected RT features along the sliding window. Rows correspond to AA 

types (only the selected AA types are listed) and columns to positions in the sliding 



window where 0 represents the predicted residue, +i/-i denote the ith neighboring 

residue towards C-/N-terminus, and crosses denote selected features. 

 
 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

R ×××× ×××× ×××× ×××× ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××   ×××× 

K     ×××× ××××  ×××× ×××× ×××× ×××× ××××    

L     ××××  ×××× ××××   ××××     

G       ××××  ×××× ××××      

E       ×××× ×××× ××××       

V        ××××        

A        ××××        

F       ××××         

 

Table 9. Summary of the selected PSSM features along the sliding window. Rows 

represent positions in the sliding window where 0 represents the predicted residue 

and +i/-i denote the ith neighboring residue towards C-/N-terminus. Columns represent 

AA types. The cells in the table represent PSSM features where shading denotes the 

results of the feature selection. Darker shading corresponds to higher ranked features 

(according to the χ2-scores) and white shading to features that were not selected. The 

last row/column shows the average χ2-score of the selected PSSM features for each 

window position/ AA type. The χ2-scores for each feature are obtained by using χ2 

feature selection method where a higher χ2-score corresponds to a higher rank in the 

feature selection. 
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Relationship between sequence conservation and RBRs 

The feature selection demonstrates the fundamental role of the sequence conservation 
in predicting RBRs. A total of 260 out of the 300 PSSM features are selected, see 

Table 9. The average χ2-scores of the selected features at each window position are 
computed and shown in the figure. As expected, the distribution of the average scores 
is relatively symmetric and the values diminish with the linear distance with respect to 
the central position in the window. We found an exception at the +2 /-2 positions, in 
which case the average χ2-score is lower than that for positions +1/-1 and +3/-3. This 

could be due to weaker interactions between the central residue and the two residues 
at +2/-2 positions when compared to the residues at +3/-3 or +4/-4 positions which 
may form hydrogen bonds with the central residue [75]. We also compute the average 
χ2-scores for the 20 AA types. The six AA types with the highest scores are Asp (D), 
Arg (R), Glu (E), Lys (K), Tyr (Y) and Val (V). The Arg, Lys and Tyr have positively 

charged side chains and thus they have a higher chance to interact with the negatively 
charged RNA. The Asp and Glu that have negatively charged side chains and the 
hydrophobic Val are disfavored in the RNA binding sites [19]. 
 
The selected features also include 15 EntWOP features. The χ2-scores of those 

features are not symmetrical with respect to the central position in the window. The 
residues with higher scores are located towards the N-terminus side of the window. 
Currently, we have no explanation for this skewed distribution. Among the 14 CNCC 
features, only one feature (corresponding to the correlation between the central 
residue and the residue at the 1st position towards the N-terminus) was removed. The 

top scoring CNCC features correspond to the residues at +2/-2 position in the window. 

Relationship between secondary structure and RBRs 

During the feature selection, none of the SSProb features were removed, indicating 
that the predicted secondary structure information of the target and the neighboring 
residues is helpful in distinguishing binding/non-binding residues. Two out of 27 

TriSS features were selected and they correspond to secondary structure triplets 
“CCC” and “HHH”. Among the SSCont, SegLen and SegDB features, only the coil 
and helix related features are selected. The reason could be that coil residues provide 
flexibility for RNA binding sites while helix residues are disfavored due to their 
rigidity. Treger and Westhof [16] found that RNA interface residues in helices that 

interacted with the RNA molecules through main-chain contacts were less numerous 
than expected. Ellis et al.’s work shows that helices are disfavored in protein-RNA 
interface while non-helical structures may occur more frequently due to their potential 
flexibility, which complements the flexible nature of the bound RNA structures [102]. 
 

Among the three SSCont features, we analyze two features that represent the predicted 
coil/helix content in the sliding window. We contrast values of these two features on 
the RB86 dataset between the windows in which the central residue binds RNA (RBR 
windows) and the windows where the central residue does not bind RNA (non-RBR 



windows). The average coil content for the RBR and non-RBR windows is 49.3% and 
39.6%, respectively, while the helix content equals 29.7% and 40.4%, respectively. 
This confirms that coil conformation, in contrast to the helical conformation, is more 

frequent in a sequence window centered on the RBRs.  
 
Two SegLen features (segment length of predicted coils/helixes) and four SegDB 
features (minimum/maximum distance between the central position and the 
boundaries of the predicted coil/helix segments) were picked by the feature selection. 

Figures 9 and 10 present the RNA binding propensities for the residues with varied 
SegLen and SegDB values that were computed on the RB86 dataset. Propensity larger 
than zero indicates that more residues with certain Seglen/SegDB value are observed 
in the RNA-binding sites than that observed in other sequence positions, i.e., RBRs 
prefer sequence patterns with certain Seglen/SegDB value. On the contrary, propensity 

smaller than zero means residues with certain Seglen/SegDB value are less likely to be 
RBRs. Propensity equal to zero means that no preference is found. Figure 9 
demonstrates that residues in long coil segments are more likely to bind RNA, while 
residues in long helix segments are disfavored in the RNA binding sites. Additional 
insights are provided in Figure 10 which reveals that the positive/negative propensity 

is higher for residues that are located farther from the termini of the predicted 
coil/helix segments, i.e., inside of longer segments. The underlying reason behind 
these observations could be that coil structures are more flexible and can provide 
flexibility needed for the RNA-binding process, while helix structures are relatively 
more rigid. 
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Figure 9. RNA binding propensity for residues with varied SegLen values, which are 

defined as the length of the predicted secondary structure segment which includes the 

central residue. The SegLen_C and SegLen_H correspond to the coil and helix 

segments, respectively. The x-axis represents the length of corresponding segment 

and the y-axis denotes the RNA binding propensity defined as percentage of RBRs 

with certain SegLen value among all RBRs divided by the percentage of all residues 

with the same SegLen value among all residues in the RB86 dataset. The length of 

helix segments starts from 3 since at least three consecutive helical residues are 

necessary to form a helix segment. The propensities were computed using the RB86 

dataset. 
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Figure 10. RNA binding propensity for residues with varied SegDB_min values, which 

are defined as the minimal distance between the central position and the boundaries 

of the predicted secondary structure segments. The SegDB_min_C and 

SegDB_min_H correspond to the distance to the nearest coil and helix segments, 

respectively. The x-axis represents the minimum distance and the y-axis denotes the 

RNA binding propensity defined as percentage of RBRs with certain SegDB_min 

value among all RBRs divided by the percentage of all residues with the same 

SegDB_min value among all residues in RB86 dataset. The propensity distribution for 

the maximal distance is not shown since it is not as consistent as the distribution for 

the minimal distance. The propensities were computed using the RB86 dataset. 

Relationship between solvent accessibility and RBRs 

All 15 RSA features and 7 AveRSA features were picked in the performed feature 

selection. We study the relation between these features and the RBRs using the RSA-0 
feature, which represents the relative solvent accessibility of the target residue. This is 
since this feature obtains the highest χ2-score among all 15 RSA features. Figure 11 
shows the distribution of RSA-0 values for the RBRs and non-RBRs. We observe that 
RBRs tend to have higher RSA-0 values, i.e., they are more solvent exposed, as the 

corresponding distribution peaks around the [0.30, 0.35) interval. On the contrary, the 
distribution of the RSA values for the non-RBRs is skewed towards lower values and 
it peaks around the [0, 0.1) interval. This indicates that residues that are partially 
solvent exposed are more likely to form the RNA binding sites. 
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Figure 11. Distribution of predicted RSA values for the RBRs/non-RBRs in central 

position in the sliding window (the RSA-0 feature). Values of the predicted RSA that 

vary between 0 (fully buried) and 1 (fully exposed) are divided into 20 equally-sized 

bins (x-axis). The y-axis denotes the percentage of RBRs/non-RBRs with RSA values 

in a certain bin. 

 

A total of 22 out of 54 SR features, which incorporate both the predicted secondary 

structure and solvent accessibility, are selected. All of them but two, which have low 
χ2-scores, concern the coil and helix structures. This is consistent with the selected 
SS-based features, and demonstrates the importance of the coil and helix structures in 
the RBR prediction. The top three SR features according to the χ2-scores are 
SR_[0.1,1.0]_C, SR_[0.2,1.0]_C and SR_[0,0.2)_H. The first two features correspond 

to the exposed coil residues which are more likely to form RNA binding sites and the 
last feature denotes the buried helical residues which have lower chance to bind RNA. 

Conclusions 

We developed a novel sequence-based method, called RBRpred, for the prediction of 

RNA binding residues (RBRs). RBRpred utilizes a wide range of information derived 
from the amino acid (AA) sequence including PSI-BLAST profiles, predicted 
secondary structure (SS) and predicted relative solvent accessibility (RSA). This 
information is converted into five custom-designed sets of features (sequence-based, 
PSSM-based, SS-based, RSA-based and SS&RSA-based features) which are fed into 

SVM classifier to generate the predictions. 
 
We applied feature selection to reduce the dimensionality of the input vector and to 
investigate the relations between the input features and residues that interact with 



RNA. Analysis of the selected features reveals that: (1) sequence conservation plays a 
fundamental role in predicting RNA-binding residues; (2) the positively charged AAs 
Arg and Lys show higher propensity to form RNA-binding sites due to their ability to 

interact with the negatively charged phosphate backbone of the RNA; (3) Gly also has 
higher propensity since it provides flexibility for the protein-RNA interactions; (4) 
Glu that has negatively charged side chain and a few hydrophobic residues such as 
Leu, Val, Ala and Phe are disfavored in the RNA-binding sites; (5) residues in the coil 
conformation, especially those in long coil segments, are more flexible and are more 

likely to interact with RNA; (6) residues in the helix conformation are more stable 
(rigid) and consequently they are less likely to bind RNA; and (7) residues that are 
partially exposed to the solvent are more likely to be in the RNA-binding sites. 
 
We evaluated contributions of each of the five feature sets to the prediction of the 

RNA binding residues. PSSM-based features that express evolutionary conservation 
account for over 60% of the selected features and they contribute the most to the 
prediction. The sequence-based features rank second, and the remaining three feature 
sets have the lowest and comparable impact on the prediction. We also investigated 
the impact of the usage of the native SS and RSA when compared with the predicted 

values. We conclude that predicted SS and RSA are sufficient for the prediction of 
RNA binding residues, and that knowledge of the native RSA values helps in 
predictions of RBRs defined using lower distance cutoff. 
 
The RBRpred method was compared with state-of-the-art sequence-based prediction 

methods on three benchmark datasets using both 5 fold cross validation and jackknife 
test. We also performed a blind test of the proposed method on an independent dataset. 
The results demonstrate that RBRpred is characterized by quality comparable to or 
better than the existing methods. 

Abbreviations 

RBR RNA-Binding Residue 
SVM Support Vector Machine 
AA Amino Acid 
PSSM Position Specific Scoring Matrix 

MCC Matthews Correlation Coefficient 
FCV Fold Cross Validation 
ROC Receiver Operating Characteristic 
AUC Area Under the ROC Curve 
SS Secondary Structure 

ASA solvent Accessible Surface Area 
RSA Relative Solvent Accessibility 
RT Residue Type (amino acid type of a given residue) 
WOP Weighted Observed Percentage (generated by PSI-BLAST) 



EntWOP Entropy computed based on WOP vector 
CNCC Close Neighbor Correlation Coefficient (correlation coefficient of PSSM 

vectors of neighboring residues) 

SSprob Secondary Structure Probabilities (probability of a given residue to be 
predicted as helix, strand or coil by PSIPRED) 

SScont Secondary Structure Content 
TriSS Triplet Secondary Structure 
SegLen secondary structure Segment Length 

e.g. SegLen_C and SegLen_H correspond to the length of coil and helix 
segments, respectively. 

SegDB in one secondary structure Segment, Distance between the given residue 
and the Boundaries of the segment 
e.g. SegDB_min_C and SegDB_min_H represent the minimum distance 

from the given residue to the boundaries of coil and helix segment, 
respectively. 

AveRSA Average RSA value in a sliding window 
SR SS and RSA 

e.g. SR_[0.1,1.0]_C indicates the given residue is a coil residue and the 

RSA value of that residue is within range [0.1,1.0]. 
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