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Abstract 

Current efforts in design and characterization of drugs often rely on the structure of their protein 

targets. However, a large fraction of proteins lack unique 3-D structures and exist as highly 

dynamic structural ensembles. These intrinsically disordered proteins are involved in 

pathogenesis of various human diseases and are highly abundant in eukaryotes. Based on a 

comprehensive analysis of the current druggable human proteome covering 12 drug classes 

and 18 major classes of drug targets we show a significant bias toward high structural coverage 

and low abundance of intrinsic disorder. We review reasons for this bias including widespread 

use of the structural information in various stages of drug development and characterization 

process and difficulty with attaining structures for the intrinsically disordered proteins. We also 

discuss future of intrinsically disordered proteins as drug targets. Given the overall high 

disorder content of the human proteome and current bias of the druggable human proteome 

toward structural proteins, it is inevitable that disordered proteins will have to raise up on the 

list of prospective drug targets. The protein disorder-assisted drug design can draw from current 

rational drug design techniques and would also need novel approaches that no longer rely on a 

unique protein structure. 
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1. INTRODUCTION 

Current drugs interact with a variety of molecules with proteins being the prime targets (1-3). 

The process of drug design and characterization often relies on the structure of the underlying 

protein target(s) (4-12). However, recent research reveals that many biologically functional 

protein regions and even entire proteins might lack a stable tertiary and/or secondary structure 

in solution, indicating that a unique 3-D structure is not required for a protein to be biologically 

active. On the contrary, many crucial biological functions do in fact originate from or critically 

depend on the lack of ordered structure in a protein molecule (13-22). These intrinsically 

disordered proteins and protein regions (IDPs and IDPRs, respectively) are known to exist as 

highly dynamic structural ensembles, which can be classified as collapsed (molten globule-like) 

or extended (coil- or pre-molten globule-like) conformational ensembles (15, 23-25).  

 

Recent years have observed interest in the use of IDPs and IDPRs as drug targets (26-29). This 

interest is fueled by the fact that intrinsic disorder is highly abundant in nature (19, 30-34). In 

particular, the overall levels of disorder increase with the increase in the organism complexity, 

culminating in highly disordered eukaryotic proteins, over a half of which are predicted to have 

long disordered regions (LDRs) (19, 30, 31, 33, 34). The LDRs are defined as regions of at 

least 30 consecutive disordered residues (31, 35-37) and are recognized as biologically 

functional intrinsically disordered domains (31, 38, 39). The high natural abundance of intrinsic 

disorder results in an intimate involvement of IDPs/IDPRs in many important biological 

processes (13-19, 23, 24, 40-48). High conformational flexibility of IDPs/IDPRs makes them 

perfect targets for various post-translational modifications, thereby providing useful means for 

the control, regulation, and modulation (47, 49, 50). The biological functions of IDPs/IDPRs 

are many and they complement functions of ordered proteins (45-47). Many IDPs undergo 

disorder-to-order transition upon function, e.g., due to the interaction with other proteins, 

nucleic acids, membranes, or small molecules (13-15, 17, 18, 42, 48, 51-54). The degree of the 

function-induced structural rearrangements vary over a very wide range. Typically, bound IDPs 

retain substantial levels of disorder, but some of them could be tightly folded (55, 56). Some 

IDPs/IDPRs are able to interact with a number of partners and some of these promiscuous 

binders were shown to fold differently being bound to different partners (53, 57, 58). 

Furthermore, binding promiscuity defines the frequent involvement of IDPs/IDPRs in 

functional regulation of their binding partners, assembly of supra-molecular complexes, and in 

the organization, maintenance, and control of complex protein-protein interaction networks (23, 

42, 53, 59-61). 

 

Many proteins associated with the various diseases are involved in recognition, regulation, and 

cell signaling, and a great number of them are IDPs or hybrid proteins containing ordered 

domains and functional IDPRs. This common involvement of IDPs in the pathogenesis of 

numerous human diseases gave rise to the “disorder in disorders” or D2 concept (62-67). A 

partial list of human diseases originating from the misbehavior of IDPs includes cancer (51, 

68-73), neurodegenerative (64, 74-77) and cardiovascular (78) diseases, type II diabetes (76), 



AIDS (79), amyloidosis (80), and cystic fibrosis (81). Often, pathogenic misbehavior of 

IDPs/IDPRs originates from the point mutation(s) or from a protein exposure to internal or 

external toxins. Furthermore, this misbehavior can also be caused by impaired post-

translational modifications, such as phosphorylation, advanced glycation, deamidation, 

racemization, etc., an increased probability of degradation, impaired trafficking, loss of binding 

partners, or oxidative damage (82). All these factors can act independently, additively, or 

synergistically (67, 82-84). 

 

Given the high levels of abundance of IDPs/IDPRs in higher eukaryotes, their promiscuous 

binding and involvement in various human diseases we investigate how well they have 

penetrated into the human drug targets. We show that the druggable human proteome is biased 

towards structured proteins and characterized by a relatively low abundance of intrinsic 

disorder. We review reasons for this bias and discuss future of intrinsic disorder in the 

druggable human proteome. 

 

2. ANALYSIS OF DRUGGABLE HUMAN PROTEOME 

We comprehensively analyze the abundance of intrinsic disorder together with structural 

coverage in the current druggable human proteome for a representative set of drug classes 

including small molecule-based compounds, antibodies, peptides, proteins, antisense 

oligonucleotides, vaccines, siRNAs, adenoviral vectors, and aptamers. We also perform this 

analysis for a wide range of major functional classes of human drug targets, such as GPCRs, 

various enzyme classes, enzyme regulators, various receptors, transporters, transcription 

factors, cytokines, and growth factors.  

 

The lists of drugs and human drug targets together with their categorization into classes were 

collected from a recent comprehensive resource from ref.(1). This resource includes data from 

the DrugBank database (85) cross-referenced with the Drugs@FDA database (http:// 

www.fda.gov/drugsatfda) to collect FDA approved drugs and obtain list of established drug 

targets (86). It also incorporates novel drug targets that were obtained from the Drug in Clinical 

Trials Database that is maintained by CenterWatch (http://www.centerwatch.com/). We 

mapped target proteins into the complete human proteome (68,820 proteins) from UniProt (87) 

to collect their sequences and facilitate characterization of intrinsic disorder and structural 

coverage. The corresponding 1027 human proteins compose the druggable human proteome 

and include 556 established targets and 476 novel targets. We note that the novel targets were 

defined with a scope of a given drug and thus the sum of novel and established targets is larger 

than the number of all human targets. The drugs and target proteins were categorized into 

classes (1) utilizing the standardized annotations established by the Nomenclature Committee 

of the International Union of Biochemistry and Molecular Biology for enzymes (88), 

classification used by the Transporter Classification database for transporters (89), and 

classification extracted for UniProtKB and Swiss-Prot (90) for other types of targets. Our 

analysis considers 12 major drug classes and 18 major classes of drug targets that have at least 



10 protein targets (Fig. 1). This restriction allows us to generate statistically sound estimates of 

the abundance of disorder and structural coverage for the selected classes of drug targets and 

druggable human proteome, and to compare them with the values for the human proteome. 

Figure 1 shows that among the target classes, several targets belonging to the kinase family, 

such as non-specific serine/threonine protein kinase, cytoplasmic protein tyrosine kinase, and 

mitogen-activated protein kinase, show a major percentage of novel targets (white bar). This 

relatively high prevalence of kinases among the novel drug targets is explained by the 

increasing recognition of kinases as important regulators of various cellular pathways and 

cascades critically involved in the pathogenesis of various diseases (91-95). 

 

 

 

Figure 1. Breakdown of the fraction of targets for the considered 12 drug classes and 18 targets classes. The y-
axis in in the logarithmic scale. The black and white bars denote established and novel targets, respectively, which 
are sorted in the descending by the total fraction of targets for drug and targets classes.  

Given the large size of our data, we applied five complementary high-throughput disorder 

predictors including two versions of IUPred (96), which predict long and short disordered 

regions, and three versions of Espritz (97) that predict three main types of intrinsic disorder 

annotations including annotations via X-ray crystallography, NMR, and based on experimental 

evidence from the Disprot database (98). These methods offer good predictive performance 

based on a recent large-scale assessment (99). Their predictions were combined via majority 

vote consensus where a given residue is predicted as disordered if majority of the methods 

(three or more out of the five) predict it as disordered; otherwise the residue is predicted as 

structured. The same consensus was recently utilized in related studies (34, 100, 101). 

Furthermore, the use of consensus was previously shown to lead to an increase in the predictive 

performance (99, 102, 103). We quantified two measures of the abundance of intrinsic disorder. 

They include disorder content, defined as the fraction of disordered amino acids among all 



amino acids in a given set of proteins, and number of long disorder regions (LDRs) per unit of 

2000 amino acids, defined as number of LDRs in a given set of proteins divided by the total 

number of amino acids in these proteins and multiplied by 2000. These measures were 

computed for the entire human proteome (68,820 proteins), the druggable human proteome 

(1,027 proteins), and for each class of druggable proteins. 

 

The structural coverage was calculated based on a method from ref. (104), which was also 

recently used to characterize relation between overall abundance of intrinsic disorder and 

structural coverage (34). Briefly, a given protein was compared to all sequences from the 

Protein Data Bank (105, 106) using three rounds of PSI-BLAST (107). The protein was 

assumed to be structured if PSI-BLAST found a hit with at least 50 amino acids in length and 

E-value < 0.001. This means that structured proteins have structural information for at least 

one long fragment of their sequences. The structural coverage of the human genome or a given 

class of druggable proteins is defined the fraction of structured sequences in this protein set. 

 

3. STRUCTURAL COVERAGE AND INTRINSIC DISORDER IN DRUGGABLE 

HUMAN PROTEOME 

The structural coverage, disorder content and count of LDRs for the whole human proteome, 

druggable human proteome, all major classes of druggable protein targets, and druggable 

targets associated with main classes of drugs are summarized in Figure 2. The druggable 

proteome is characterized by high levels of structural coverage, with about 94% of druggable 

targets having at least part of their sequences with solved structure (Fig. 2). To compare, the 

same estimate for the entire human proteomes results in significantly lower structural coverage 

value of 53%. This clear bias could be attributed to the widespread utilization of the structural 

information in various stages of drug development process including rational drug design (5-9, 

108, 109), investigations of mechanistic insights into protein-drug interactions (110-114), drug 

repositioning (10, 11), and characterization of side-effects and off-targets of drugs (12, 115, 

116). Furthermore, we observe an inverse trend for the abundance of intrinsic disorder. When 

compared with the human proteome, the druggable human proteome is characterized by almost 

two-fold lower disorder content (0.13 vs. 0.23) and similarly significantly lower counts of 

LDRs (0.65 vs 1.2). This could be explained by the fact that structural characterization of 

proteins containing substantial amounts of disorder is challenging (117, 118) and that such 

proteins are generally avoided in the target selection pipelines for structural genomics (119-

122). This is a particularly important factor in the case of the human proteome, which is 

characterized by relatively high amounts of disorder compared to the bacterial and archaeal 

proteomes, and to the proteomes of some eukaryotic species (31, 33, 34, 123). 

 

Perhaps not too surprisingly, Figure 2A reveals that druggable targets for all major types of 

drugs have universally very high structural coverage and significantly lower abundance of 

disorder when compared to the entire proteome. Small molecule-based compounds which 



account for over 60% of all drugs (Fig. 1) have the structural coverage at 95% and disorder 

content at 0.12. However, targets from two drug classes, proteins and antisense 

oligonucleotides, reach disorder content values of 0.16 and 0.19, respectively. This is 

interesting particularly given the relatively high fraction of novel targets for the 

oligonucleotides (Fig. 1). Moreover, similarly high values of coverage and disorder are true for 

both established and novel drug targets (Fig. 2B). This demonstrates that currently there is no 

major shift in the drug target selection for the compounds that are in clinical trials. In our view, 

one of the obstacles that prevents deeper penetration of disordered proteins into the druggable 

human proteomes is the current paradigm that is focused on the structure-assisted drug design 

and characterization (124-134).  



 

Figure 2.  Structural coverage, number of LDRs and disorder content for the human proteome, druggable human proteome, and protein targets associated with major drug classes 
(Panel A), major classes of targets (Panel B), and novel vs. established targets (Panel B). Drug types and functional protein classes are sorted in the descending order by the disorder 
content. The measurements are based on 10 repetitions with 50% of randomly chosen proteins from a given dataset; bars denote the mean value with the corresponding standard 
deviations shown as the error bars. Solid horiontal lines denote the structural coverage (black), number of LDRs (light gray) and disorder content (dark gray) of the entire human 
proteome. The significance of the differences in the coverage, content and counts between the entire proteome and druggable proteome including each druggable class target is annotated 
at the base of the bars where ↑, ↓, and ≈ denote that druggable proteins have significantly higher, lower, or comparable values based on p-value of 0.05. Given that the measurements 
were normal, based on the Anderson-Darling test at p-value of 0.05, we used the t-test to assess the significance; otherwise we used the Wilcoxon rank-sum test. 



 

Figure 3. Structural coverage, number of LDRs and disorder content for the human proteome, druggable human 
proteome, and three classes of proteins characterized by relatively high disorder content: histone deacetylases, 
nuclear receptors and transcription factors. The analysis is performed for the current druggable targets from these 
three classes (set of bars on the right) and the remaining proteins from these three classes (set of bars in the middle). 
The measurements are based on 10 repetitions with 50% of randomly chosen proteins from a given dataset; bars 
denote the mean value with the corresponding standard deviations shown as the error bars. Solid horiontal lines 
denote the structural coverage (black), number of LDRs (light gray) and disorder content (dark gray) of the entire 
human proteome. The significance of the differences in the coverage, content and counts between the entire 
proteome and each set of proteins is annotated at the base of the bars where ↑, ↓, and ≈ denote that druggable 
proteins have significantly higher, lower, or comparable values based on p-value of 0.05. Given that the 
measurements were normal, based on the Anderson-Darling test at p-value of 0.05, we used the t-test to assess the 
significance; otherwise we used the Wilcoxon rank-sum test. 

4. INTRINSICALLY DISORDERED PROTEINS AS DRUG TARGETS  

Being involved in crucial protein-protein interactions and linked to the pathogenesis of various 

human diseases, IDPs/IDPRs represent novel, attractive, but challenging drug targets (26). 

Research shows that it is feasible to find molecules that target IDPRs (29). Although the best 

part of major functional classes of druggable targets have significant bias towards low amounts 

of disorder and high structural coverage, some types of targets have comparable or higher 

disorder content when compared to the whole proteome (Fig. 2B). The most notable examples 

are histone deacetylases, nuclear receptors, and transcription factors. In comparison with the 

whole human proteome, the druggable histone deacetylases are characterized by the 

significantly higher count of LDRs (2 vs. 1.2 for the whole genome) and significantly higher 

disorder content (0.30 vs. 0.23). The druggable nuclear receptors and transcription factors also 

have relative high disorder contents at 0.24 and 0.22, respectively. These three classes of drug 

targets account for 9.7% of all druggable targets that we considered (Fig. 1). We extracted a 

complete set of 20 well-annotated (supported by experimental evidence) histone deacetylases, 

79 nuclear receptors and 408 transcription factors from the human proteome. Comparison of 

the druggable proteins from these three functional classes with the remaining proteins reveals 

that the former are actually depleted in disorder and LDRs when compared with their overall 

population in the whole genome (Fig. 3). The latter groups of proteins, which constitute 

prospective druggable targets, are characterized by very high LDR counts between 2 and 2.4 

per 2000 residues and very high disorder content ranging between 0.38 and 0.42. These 



measurements are significantly higher than for the entire human proteome and (obviously) than 

for the current druggable proteome. This suggest that the future of the drug design will likely 

include a stronger emphasis on the disordered protein targets. However, inherent lack of 

structure in these proteins calls for novel ways for the protein disorder-assisted drug discovery 

(28).  

 

The protein disorder-assisted drug design depends on current rational drug design techniques, 

i.e., by targeting the ordered domains of proteins containing disordered regions and the 

structured partners of disordered proteins, and also requires novel approaches that no longer 

rely on a unique protein structure. The former approaches rely on the heterogeneous nature of 

IDPs containing ordered and disordered domains and the ability of IDPs/IDPRs to interact with 

ordered partners. The ordered domains can be targeted as typical structured proteins, and drugs 

blocking ligand binding sites in such ordered domains can be found by high-throughput 

screening of possible compounds or by rational drug design approaches based on the prior 

knowledge of the domain’s 3-D structure (28). Drugs for blocking sites of ordered proteins 

involved in interactions with IDPs/IDPRs can also be designed based on the information on the 

3-D structure of their ordered partner; an example case that involves a compound that inhibits 

interaction between a disordered domain of p53 and ordered Mdm2 was described in ref. (26). 

 

The latter, novel approaches directly target disordered regions. Identification of such regions 

benefits from an observation that IDPs/IDPRs often bind their partners via relatively short 

contiguous motifs that often become ordered upon binding (135, 136) and that such regions 

can be accurately predicted (137, 138). One option for targeting disordered regions is to 

find/design drugs that induce misfolding of this region, where the structure induced via the 

interaction with the drug prevents function of the corresponding protein. An example here is 

related to disruption of association between two disordered proteins: Max and c-Myc 

oncoprotein (139). Even though structure-based rational design failed in this case, inhibitors 

were found via high-throughput screening (140). Using NMR, they were found to bind to the 

c-Myc monomer in a disordered region located in the c-Myc:Max interface, effectively 

preventing formation of the corresponding dimer (139). Other examples can be found in refs. 

(26, 28). Although these examples demonstrate that drugs can modulate function of disordered 

proteins and regions, the development of corresponding rational drug design methods is in very 

early stages (141). One recently proposed approach advocates use of molecular dynamics 

simulations (142).  
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